
Facetons: Face Primitives with Adaptive Bounds
for Building 3D Architectural Models in Virtual Environment

Naoki Sasaki∗ Hsiang-Ting Chen† Daisuke Sakamoto‡ Takeo Igarashi§

JST ERATO Igarashi Design Interface Project / The University of Tokyo

Abstract

We present faceton, a geometric modeling primitive designed for
building architectural models, using a six degrees of freedom (DoF)
input device in a virtual environment (VE). A faceton is given as
an oriented point floating in the air and defines a plane of infinite
extent passing through the point. The polygonal mesh model is
constructed by taking the intersection of the planes associated with
the facetons. With the simple drag-and-drop and group interaction
of faceton, users can easily create 3D architecture models in the
VE. The faceton primitive and its interaction reduce the overhead
associated with standard polygonal mesh modeling in VE, where
users have to manually specify vertexes and edges which could be
far away. The faceton representation is inspired by the research on
boundary representations (B-rep) and constructive solid geometry
(CSG), but it is driven by a novel adaptive bounding algorithm and
is specifically designed for the 3D modeling activities in an immer-
sive virtual environment.

CR Categories: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction Techniques; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling—Geometric Algo-
rithms

Keywords: geometric modeling, polygonal mesh, virtual reality

1 Introduction

IImmersive environments can be an ideal geometric modeling in-
terface for architecture because they allow situated, body-scale in-
teractions. The user can put up walls in front of them as if he or she
were in the actual environment. An example of such a vision can
be seen in a popular short film called World Builder [Branit 2007].

Previous research projects integrated computer-aided design (CAD)
and CSG software frameworks in immersive environments [Butter-
worth et al. 1992, Fernando et al. 1999, Ma et al. 2004] nd ex-
plored the possibility of using different user interfaces for 3D mod-
eling in VE, such as sculpting [Galyean and Hughes 1991], hand
gestures [Tsang et al. 1998, Matsumiya et al. 2000], hand mo-
tions [Schkolne et al. 2001], speech and 6-DoF controllers [Bourdot
et al. 2010]. However, a fundamental problem is that the geometric
primitives (e.g. vertices, edges, triangles) which users interact with
are designed for the desktop environment with 2D inputs and might

∗e-mail:naoki.sasaki@ui.is.s.u-tokyo.ac.jp
†e-mail:ht.timchen@gmail.com
‡e-mail:d.sakamoto@acm.org
§e-mail:takeo@acm.org

Figure 1: Illustration of a user using faceton in an immersive envi-
ronment. The user can easily create walls without worrying about
reaching vertices or edges far away.

not be suitably controllable in an immersive environment. For ex-
ample, imagine the user is constructing a 3D architectural model
in an immersive environment in the first-person view. It would be
difficult for her to reach to the vertices in the corners of the poly-
gon (which are often far away) from her stand point [Salamin et al.
2006] (Figure 1). Some VR systems deploy CSG or B-rep [Ma
et al. 2004, Bourdot et al. 2010] primitives in VE to facilitate the
modeling process. However, the user controls for these modeling
primitives are directly from desktop software; e.g., they only allow
1D or 2D scaling of the selected primitive even though the con-
trollers themselves for the 3D environment provide higher DoFs.

In this paper, we present faceton, a geometric modeling primitive
designed for 3D architectural model using a 6-DoF input device in
an immersive virtual environment. A faceton is an oriented point in
3D space and represents an infinite plane passing through it. Edges
and vertices are defined as intersections of planes associated with
the facetons. The planarity of a face is guaranteed throughout the
process, even if the user relocates and rotates a faceton. In the VE,
the faceton moves as if it is an oriented disk attached to the front
of the 6-DoF controller and users can easily modify its position and
orientation through the controller. Figure 1 shows an illustration
of a user placing a faceton in an immersive virtual environment.
Users can easily put walls in front of themselves without worry-
ing about dragging edges or vertices that could be far away. Fig-
ure 2 shows snapshots of an example modeling session in which
the user constructed a 3D architectural structure using facetons. In
this example, the user built the model shown in Figure 2 with only
seven actions, which is significantly fewer than any other modeling
method.

The main contribution of the paper is on the vision of combining
face primitives with a 6-DOF input device for fast prototyping of
architectural buildings in an immersive virtual environment. We
describe the interactions for manipulating faceton and discuss the
pros and cons we observed during a pilot user study. The secondary
contribution is an adaptive face-primitives bounding algorithm that
drives the faceton manipulation at an interactive speed. Interaction
speed is essential in VR. To ensure it, the algorithm has several



a� b� c�

d� e� f�

Figure 2: Modeling with facetons, which are face primitives with
three-dimensional position and orientation information defining a
planar surface of infinite extent. (a-d) The user designs a model by
placing facetons in the virtual environment. (e) The user can also
place a primitive representing a cylindrical surface. (f) The system
constructs a polygonal mesh model by bounding the surfaces with
their intersections.

limitations and is heuristic, unlike a formal CSG approach; but we
believe it forms the basis for future development.

2 Related Work

3D Modeling in a Desktop Environment Various modeling meth-
ods have been proposed in the past for 3D CAD such as polygonal
meshes, solid modeling, and parametric (feature-based or history-
based) representation. However, most of these methods are de-
signed for careful editing of large and accurate 3D models ready
for manufacturing and impose too much overhead to permit quick
exploration of simple geometric forms. In contrast, our goal is to
support very rapid instantiation of rough geometric shapes while
sacrificing accuracy and scalability to some extent.

Our work is related to sketching systems in that we aim at rapid in-
stantiation of rough forms. Typical sketching systems [Lipson and
Shpitalni 1996, Zeleznik et al. 1996, Schmidt et al. 2009] take 2D
lines representing edges in the 3D scene as input and leverage 2D
input devices such as pens and touch pads. Whereas, our method
takes 3D face primitives as input and takes advantage of 6-DoF in-
put devices. Our work can be seen as an effort to support sketching
of architectural forms in an immersive environment.

Push-pull operations introduced by SketchUP [Schell et al. 2000]
can be also useful in immersive environments so that the user can
directly grab and drag a face. However, the push-pull operation
is provided as a short cut of vertex based modeling and needs to
be used in combination with other operations. For example, if one
wants to put a column at the corner of a box (Figure 2f), the user
first has to draw a rectangle on the ground before pulling up the rect-
angle vertically. This is problematic for immersive environments
where is it tedious to switch between different tools (drawing and
push-pull) and to reach the ground to draw the rectangle.

3D Modeling in Virtual Environment Many studies have been
done on 3D modeling in an immersive environment. Closely re-
lated to our architecture building scenario are those aimed at inte-
grating CAD design into the virtual environment: Butterworth et
al. [Butterworth et al. 1992] was the first to show the potential of
CAD modeling with a head mounted display (HMD) in an immer-
sive environment. Fernando et al. [Fernando et al. 1999] proposed
a software framework for constrained VE, whereas Ma et al. [Ma
et al. 2004] discussed interaction and model representation in solid
modeling in VE. The Environ system [Raposo et al. 2009] enables

real-time interaction and navigation of industrial CAD objects in
VR.

Researchers have also proposed different interaction paradigms for
modeling in VE. Tsang et al. [Tsang et al. 1998] linked virtual hand
gestures to basic 3D modeling operations for modeling in a VRML
world, whereas Matsumiya et al. [Matsumiya et al. 2000] devised a
way to learn from the clay work metaphor and designed a free-form
modeling system. Anderson et al. [Anderson et al. 2003] let users
design architecture using a kiosk toolbox, and Bourdot et al. [Bour-
dot et al. 2010] proposed a VR-CAD environment with multimodel
immersive interactions including a 6-DoF controller, speech, and
gestures. Lau et al. [Lau et al. 2012] presented furniture modeling
with tangible primitives in augmented reality environment

Some of these studies allow users to control B-Rep primitives,
which have similar behavior to the proposed faceton, in VE [Ma
et al. 2004, Bourdot et al. 2010]. Yet the fundamental control in the
B-Rep remains the same as its desktop counterpart; that is, users
can only control one DoF (e.g. move, scaling in a single direction)
or perform basic object add / subtraction movements. On the con-
trast, faceton is a 3D modeling primitive specifically designed for
real-time interaction and 3D modeling in an immersive environment
with a 6-DoF control.

Constructive Solid Geometry The faceton representation is in-
spired by classical studies on CSG [Hagen and Roller 1991] and
the B-rep technique [Stroud 2006]. A survey of these two disci-
plines is out of the scope of this paper; here, we only briefly com-
pare faceton with other primitives in CSG and B-rep. The faceton
is related to CSG primitives in that edges and vertices are repre-
sented as intersections among primitives. Moreover, the concept of
a bounding representation is similar to B-rep. However, the impor-
tant difference is that the extent of our surface primitive (faceton)
is adaptively bounded by other surrounding surfaces, whereas each
CSG or B-rep primitive usually has a fixed extent. Some systems
allow CSG and B-rep primitives to have infinite extents, but their
influence is infinite and is not be bounded by other primitives. We
believe such an adaptive bounding feature makes faceton easier to
understand and more accessible to users who would like to make
3D architecture designs in VE.

3 Prototype System

We built a prototype VR system for testing the usability of the face-
ton primitive in VE. The VR system consisted of a head-mounted
display (Sony HMZ T1), a Wii remote, and an optical motion cap-
ture system with 14 cameras covering an area of 2.5 m (W) x 3 m
(D) x 2 m (H) (Figure 3). The 3D positions and orientations of both
the HMD and Wii remote were tracked by the mocap system at 100
Hz with a 1 mm error. The system was implemented using Java and
running on a 1.6 GHz CPU and 4-GB RAM PC. The unoptimized
code ran at an interactive speed for all 3D models described in the
paper.

4 User Interaction

In our prototype system, 3D architectural models are constructed
by placing facetons in a 3D immersive virtual environment with a
6-DoF controller. The currently selected faceton is visualized as
a yellow disk and it is moved as if it is attached to the top of the
controller (Figure 4c). After being placed in 3D space, the face-
ton becomes gray, and a planar surface of infinite extent is created
(Figure 4b).

Figure 2 shows snapshots of a complete 3D building session from
a God’s eye view. The user placed a faceton in the VE (Figure 2b),



Figure 3: A user wearing an HMD and holding a 6 DoF controller.
Both the HMD and controller have additional optical markers at-
tached, and their 3D positions and orientations are tracked with a
mocap system.

Figure 4: Snapshot of a modeling session: (a) the user, (b) VE from
a God’s eye view, and (c) HMD view. The faceton is visualized as a
disk floating in 3D space.

and a planar surface of infinite extent was created. When the user
placed the second faceton, another infinite plane appeared (Fig-
ure 2c), and the boundaries of both surfaces were updated. Fig-
ure 2d shows an intermediate state of the 3D building consisting
of six facetons. During the modeling process, the user could grab
the existing facetons and arbitrarily modify their position and orien-
tation. Their corresponding surface boundaries were concurrently
updated and the planarity of the faces was always preserved.

Note that in our prototype, users only had access to the faceton
primitive because we wanted to collect more focused and meaning-
ful feedback. However, since the polygonal mesh model was inter-
actively constructed from the facetons, our system can also support
standard mesh manipulation tools, e.g., vertex dragging and edge
adjustment.

4.1 Predefined Faceton Group

To facilitate the building process, our system provides several pre-
defined faceton groups. Each group consist of a number of facetons
having a certain spatial arrangement. In particular, the dual-faceton
group contains two perpendicular facetons, and users can use it to
create a two-sided beam into a building (Figure 5b), triple-faceton
groups can be used to create three-sided beams (Figure 5c) and cor-
ner tables (Figure 5d), whereas quad-faceton groups can be used to
create a four-sided pillar.

We also provided predefined cylindrical-faceton groups, wherein
a cylindrical surface is approximated by a group of facetons. In
Figure 2e, the user has added a curved roof to the building by using
the cylindrical-faceton group, while in Figure 5f, the user has added
a rounded pillar. Users can also control the scale and radius of these
predefined faceton groups via the controller.

a b c

d e f

Figure 5: Adding a feature to the scene by placing a predefined
faceton group. (a) Initial scene; (b) two-sided beam made with
dual-faceton group; (c) three-sided beam made with triple-faceton
group; (d) corner made with triple-faceton group; (e) pillar made
with quad-faceton group and (f) round pillar made with cylindrical-
faceton group.

4.2 Customizable Faceton Group

In addition to the predefined faceton groups, the user can also man-
ually group multiple facetons together and manipulate them as a
single entity (Figure 6). The customized faceton group is visual-
ized in red, and users interact with the faceton group via a repre-
sentative faceton, which we called the kernel (e.g. the gray faceton
on the group in Figure 6a). Using the kernel as a handle, users can
move, rotate or delete the customized faceton group with the 6-DoF
controller.

5 Algorithm

This section discusses how to compute the polygonal mesh model
from the given set of facetons. We also discuss how to extend the
basic algorithm to support a scene defined as a hierarchy of faceton
groups. These aspects turned out to be more difficult than they had
first appeared, and the solutions presented here are still exploratory
in nature.

Figure 6: Modeling operations using faceton groups. The user can
relocate (top) and rotate (bottom) a set of facetons together as a
group.



5.1 Bounding Plain Facetons

We investigated several possible designs to convert a set of facetons
into a polygonal mesh before settling on the current design. We
describe these alternative designs, together with their limitations,
and then introduce the current design.

A naı̈ve approach is to divide all of the planes defined by the face-
tons at their intersections, and then pick the regions that contain the
source facetons. Figure 7b illustrates this design in 2D. The defi-
nition is clear and the implementation is straightforward. It works
perfectly well for convex models. However, this algorithm can pro-
duce counterintuitive results for concave models because it causes
open boundaries, as shown in Figure 7b (bottom). Open bound-
aries are not desirable because it is not immediately obvious which
facetons define the boundary.

a b c d

Figure 7: Possible algorithms for bounding planes, showing two
separate examples in different rows. All faces are vertical, and the
figures show top-down views. (a) Input facetons. (b) naı̈ve method.
(c) Expansion until no open boundary remains. (d) Our method.

A possible solution is to collect surrounding regions until no open
boundary remains (Figure 7c). This method can eliminate open
boundaries in the scene. A problem is that the result depends on
the order in which the facetons are processed. Figure 7c (bottom)
shows the result of expanding the top-left faceton first, but this may
be different if the system expands another faceton first. This is
problematic because the order of facetons is not readily discernible
to users and specifying the order can be tedious. It might be possi-
ble to visualize this order information, but the visualization would
clutter the screen and the relationship between the order and the
final geometry may be difficult to understand.

Another possibility is to explicitly represent connectivity among
facetons. This is similar to the standard polygonal mesh represen-
tation, where connectivity among vertices is explicitly defined as
edges. However, it is too tedious to manually define connectivities
for all faceton pairs, especially because our aim is rapid modeling
using a 6 DOF input device. Furthermore, the idea of connectivity
is insufficient to uniquely define polygonal mesh computation from
a given faceton set. For example, the three models shown in Fig-
ure 8 cannot be distinguished by connectivity alone (faceton A, B,
and C are all connected in these models).

Based on these considerations, our current design uses the distance
between faceton pairs as a key. First, we enumerate all faceton
pairs in the scene. Then, we put all of the facetons in a priority
queue based on the Euclidian distances between the facetons in 3D
space. In the main loop, we retrieve faceton pairs with the minimum
distance one-by-one and bound them at their intersection. Figure 9
illustrates this process. This strategy can handle both convex and
concave shapes appropriately.

Most importantly, the result is fully defined by the visible geometric
information (spatial position of facetons) and is not dependent on
hidden information such as an order or a dependency graph. If the
result is not satisfactory, the user can search for the desired result

A

B

C
A B

C
A

B

C

BC→AB →AC AB → BC→AC AC→BC →AB

Figure 8: The user controls the bounding process by adjusting the
spatial relationships among facetons. The three facetons define an
identical set of infinite planes, but the bounding results are different
because the distances among facetons are different.

just by changing the positions of the facetons. Figure 8 shows an
example where the user obtains different results by changing the
relative position of the facetons. The infinite planes defined by the
facetons are the same, but the final results are different because
the relative positions of the facetons are different. This may sound
difficult to control, but users can use faceton groups when they want
to have more explicit control.

Figure 9: Our current algorithm for bounding planes. The sys-
tem enumerates all faceton pairs and bounds the pairs one-by-one
starting from the closest pair. Nothing occurs when the pair does
not have any intersection.

As shown in Figure 9 (bottom), this may generate an open boundary
at an edge. However, despite that this situation is ambiguous, we
believe that the result is an acceptable compromise. The user can
easily obtain other results by changing the positions of the face-
tons. Another shortcoming of our method is that a plane is always
bounded at the first intersection, so it does not stretch beyond the
intersection even when the user wants a T-shaped junction. How-
ever, one can generate a T-junction by placing another faceton on
the other side of the intersection.

Our current implementation first bounds the infinite plane defined
by each faceton with the ground and a sufficiently large box cover-
ing the entire scene. This makes it possible to represent a bounded
plane associated with a faceton as a simple polygonal face at any
time during subsequent computations.

5.2 Bounding Faceton Groups

A group can contain another group as a member, so the entire scene
can be represented as a tree. Each group is associated with a unique
polygonal mesh. The system recursively constructs the polygonal
mesh in a bottom-up manner from leaf nodes to the root node, and
the model associated with the root is presented to the user as the
final result. The user can control the final geometry using the group
structure. Figure 10 shows some simple examples where the final
polygonal mesh differs depending on the group structure.

The process described in the previous subsection is equivalent to
computation of a polygonal mesh at the leaf nodes. The system



A
B

C

B A C

A B

C

A B

C

A B C

A B C

A
B

C

A B C

Figure 10: Different polygonal meshes are obtained because of the
difference in the group structure. In each example (left and right),
positions of facetons are the same in the top (without groups) and
bottom (with groups) figures. The trees show the group structures
and the underlined symbol represents the kernel of the group.

sorts all of the faceton pairs within the group by distance and
bounds the planar faces associated with the faceton pairs one-by-
one. In the intermediate nodes, the process is generalized to bound-
ing among polygonal meshes defined by the faceton groups. It starts
with the sorting of faceton group pairs as in the bounding of plain
facetons. The system processes pairs of groups one-by-one in as-
cending order of distance. The question then becomes how to pro-
cess a pair of faceton groups, that is, how to bound the two polygo-
nal meshes associated with the pair.

Our current strategy is to segment the two polygonal meshes with
their intersections, and collect the segmented polygonal faces by
propagation (Figure 11). The propagation starts with the kernels
of the faceton groups and stops at an intersection (Figure 11b,c).
If the intersection is open (the propagation on the other polygonal
mesh has not arrived at the intersection), the propagation contin-
ues beyond the intersection until it is bounded by a closed intersec-
tion (Figure 11d,e). Whenever a propagation front reaches an open
boundary, it pauses and is stored in a priority queue. The queue is
sorted on the basis of the geodesic distance from the kernel. The
system repeats the propagation by retrieving a propagation front
from the priority queue until it becomes empty.

a b c d e

Figure 11: Bounding of group pairs. Red boxes represent kernels.

The above strategy generates plausible results in most cases. How-
ever, it is not perfect, and it can produce counterintuitive results
when polygonal meshes intersect many times (Figure 12). This is
not a serious problem in our experience because the users usually
set a meaningful feature as a group and such a folded surface rarely
appears. Nonetheless, this is one of the problems we want to solve
in the future.

Figure 12: A problematic result obtained by our current algorithm
for bounding a group pair. Left: input groups. Center: result ob-
tained by our current algorithm. Right: a better result, but it is not
obvious how to compute this.

6 Initial Evaluation and Results

An initial pilot user study was conducted to evaluate the usability
of faceton in VE. We recruited eight participants who had knowl-
edge about 3D graphics and 3D modeling from the computer sci-
ence department at University of Tokyo. The user study began with
a ten-minute introduction to the faceton primitive and the prototype
VR system, followed by a five-minute practice session where we
equipped the participant with an HMD and 6-DoF controller and
let him or her freely test all provided functions. After the practice
session, we asked participants to create an architectural building
from scratch using only facetons primitives. Finally, we conducted
a brief interview and collected feedback from the participants.

Figure 13: 3D architecture buildings created by the participants.

Figure 13 illustrates some of the 3D buildings created by the par-
ticipants. We were very excited to see that participants could build
buildings with fairly complex structures by using our prototype sys-
tem. During the interview, we also learned that most participants
enjoyed the construction experience in an immersive environment
and agreed that faceton primitive is easy to understand and use in a
VE.

However, the participants also raised several usability issues. A
number of participants mentioned that sometimes the geometry
generated from the facetons was not what they expected and they
had to work around it by grouping facetons together. One partic-
ipant expressed the concern that as the count of facetons and the
complexity of the buildings increased, it became difficult to man-
age or select the desired faceton, especially from the first-person
view. One participant also suggested that we should integrate other
3D modeling primitives into the system because he considered it
sometimes difficult to add certain details, like bumps and arbitrary
curved surfaces, to the building by using facetons. We believed
these issues could be addressed with a better faceton management
interface or better integration with a more powerful VR 3D model-
ing system.

7 Conclusion and Future Work

We presented faceton, an interactive geometric modeling primitive
designed for building 3D architectural model in an immersive vir-
tual environment. Given a set of facetons, the polygonal mesh
model is interactively constructed by a new adaptive bounding al-
gorithm that computes edges and vertices as intersections between
the planes defined by facetons. With the 6-DoF controller, users
can easily manipule the positions and orientations of the facetons
and rapidly construct 3D architectures in VE. Our prototype system



also provides predefined and customizable faceton group functions
to facilitate the modeling process.

The algorithm described in section 5 is one possible approach to
support the construction of 3D model from a group of facetons.
However, it was not easy to devise a perfect algorithm that always
generates intuitive results, and the algorithm of our current imple-
mentation has several limitations.

First, there is no guarantee that the user can obtain the desired shape
by using the presented method. Based on our experience, we be-
lieve that our method can represent an arbitrary geometric shape
by the user properly placing facetons and combining groups, but
a mathematical proof of this is lacking at this point. It is also not
clear whether users can find a way to obtain the desired shape by
using facetons and groups. These issues will require further inves-
tigations.

Second, the polygonal mesh construction can become unstable in
certain faceton configurations. For example, when two planes de-
fined by two facetons are nearly coplanar, a slight change in the
position and orientation of a faceton can result in a large difference
in the final polygonal mesh. This problem is not so apparent when
using the snapping mechanism, but it can be an issue when the user
wants to have fine-grained control. This issue could be more or less
resolved with an assistant snapping function, except when the user
desires fine-grained control. In such case, it might be better to in-
troduce a special group that controls nearly coplanar sets of planes
as cylindrical surfaces.

Finally, our current method does not distinguish between the in-
side and outside of a solid. That is, a faceton simply defines a face
without defining which side of the face is inside or outside a given
structure. An alternative method would be to explicitly define the
inside-outside information for each faceton (Figure 14 left). This
method might resolve some of the problems discussed so far (e.g.,
Figure 12). However, we chose our current design after several ex-
perimentations because specifying inside-outside information for
each faceton is too tedious for quick exploration. Furthermore,
in this method, one can easily create a contradictory configuration
(e.g., Figure 14 right); in such cases, it is not clear what model to
present to the user. Visualization of locally defined inside-outside
information might be possible for 2D scenes, but it can be difficult
or confusing for 3D scenes. Nonetheless, this might be the right
choice for certain application scenarios, and we plan to continue
investigating this alternative path in the future.

Figure 14: An alternative method in which the inside-outside in-
formation is explicitly defined for each faceton. This method can
clearly define a solid for a consistent configuration (left), but the
meaning becomes unclear for a contradictory configuration (right).

Our current prototype system is still a proof-of-concept, but we be-
lieve the proposal of this new modeling primitive designed specif-
ically for virtual environments could be beneficial to existing VR
tool kits and inspire new research in this direction.

References

ANDERSON, L., ESSER, J., AND INTERRANTE, V. 2003. A vir-

tual environment for conceptual design in architecture. In Proc.
EGVE ’03, 57–63.

BOURDOT, P., CONVARD, T., PICON, F., AMMI, M., TOURAINE,
D., AND VÉZIEN, J. M. 2010. Vr-cad integration: Multi-
modal immersive interaction and advanced haptic paradigms for
implicit edition of cad models. Computer-Aided Design 42, 5
(May), 445–461.

BRANIT, B., 2007. World builder. http://vimeo.com/3365942.

BUTTERWORTH, J., DAVIDSON, A., HENCH, S., AND OLANO,
M. T. 1992. 3dm: a three dimensional modeler using a head-
mounted display. In Proc. I3D ’92, 135–138.

FERNANDO, T., MURRAY, N., TAN, K., AND WIMALARATNE,
P. 1999. Software architecture for a constraint-based virtual
environment. In Proc. VRST ’99, 147–154.

GALYEAN, T. A., AND HUGHES, J. F. 1991. Sculpting: an inter-
active volumetric modeling technique. In Proc. SIGGRAPH 91,
267–274.

HAGEN, H., AND ROLLER, D. 1991. Geometric modeling:
methods and applications. Symbolic computation: Computer
graphics–systems and applications. Springer-Verlag.

LAU, M., HIROSE, M., OHGAWARA, A., MITANI, J., AND
IGARASHI, T. 2012. Situated modeling: a shape-stamping in-
terface with tangible primitives. In Proc. TEI ’12, 275–282.

LIPSON, H., AND SHPITALNI, M. 1996. Optimization-based re-
construction of a 3D object from a single freehand line drawing.
Computer-Aided Design 28, 8, 651 – 663.

MA, W., ZHONG, Y., TSO, S.-K., AND ZHOU, T. 2004. A hi-
erarchically structured and constraint-based data model for intu-
itive and precise solid modeling in a virtual reality environment.
Computer-Aided Design 36, 10, 903 – 928.

MATSUMIYA, M., TAKEMURA, H., AND YOKOYA, N. 2000. An
immersive modeling system for 3d free-form design using im-
plicit surfaces. In Proc. VRST ’00, 67–74.

RAPOSO, A., SANTOS, I., SOARES, L., WAGNER, G.,
CORSEUIL, E., AND GATTASS, M. 2009. Environ: Integrat-
ing vr and cad in engineering projects. Computer Graphics and
Applications, IEEE 29, 6, 91–95.

SALAMIN, P., THALMANN, D., AND VEXO, F. 2006. The benefits
of third-person perspective in virtual and augmented reality? In
Proc. VRST ’06, 27–30.

SCHELL, B., ESCH, J. L., AND ULMER, J. E. 2000. System and
method for three-dimensional modeling. US Patent 6628279.

SCHKOLNE, S., PRUETT, M., AND SCHRÖDER, P. 2001. Surface
drawing: creating organic 3D shapes with the hand and tangible
tools. In Proc. CHI ’01, 261–268.

SCHMIDT, R., KHAN, A., SINGH, K., AND KURTENBACH, G.
2009. Analytic drawing of 3D scaffolds. ACM Trans. Graph.
28, 5 (Dec.), 149:1–149:10.

STROUD, I. 2006. Boundary representation modelling techniques.
Springer-Verlag London Limited.

TSANG, E. K. H., SUN, H., AND GREEN, M. 1998. Virtual world
modeler. In VRST ’98, 179–186.

ZELEZNIK, R. C., HERNDON, K. P., AND HUGHES, J. F. 1996.
SKETCH: an interface for sketching 3D scenes. In Proc. SIG-
GRAPH 96, 163–170.


