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Figure 1: Reducing manual repetitions by predicting what the user might draw based on past workflows. After sketching the outlines in (a), the user starts to
fill in details which require tedious manual repetitions. Our system can help generate such repetitions by predicting what the user might want to draw based
on past sketches. (b) visualizes the user-drawn content in black (376 outline strokes and 248 interior strokes), and auto-completed content in red (897 strokes).
The final outcome is shown in (c). Our system works for both individual strokes (e.g. the detailed hatches) and structured elements (e.g. the windows). Due to
the spatial and temporal variations, these sketches are very difficult, if not impossible, to be generated via prior sequential clone systems.

Abstract

Painting is a major form of content creation, offering unlimited con-
trol and freedom of expression. However, it can involve tedious
manual repetitions, such as stippling large regions or hatching com-
plex contours. Thus, a central goal in digital painting research is to
automate tedious repetitions while allowing user control. Existing
methods impose a sequential order, in which a small exemplar is
prepared and then cloned through additional gestures. Such sequen-
tial mode may break the continuous, spontaneous flow of painting.
Moreover, it is more suitable for homogeneous areas than nuanced
variations common in real paintings.

We present an interactive digital painting system that auto-
completes tedious repetitions while preserving nuanced variations
and maintaining natural flows. Specifically, users paint as usual,
while our system records and analyzes their workflows. When
potential repetition is detected, our system predicts what the user
might want to draw and offers auto-completes that adjust to the
existing shape-color context. Our method eliminates the need for
sequential creation-cloning and better adapts to the local painting
contexts. Furthermore, users can choose to accept, ignore, or mod-
ify those predictions and thus maintain full control. Our method can
be considered as the painting analogy of auto-completes in common
typing and IDE systems. We demonstrate the quality and usability
of our system through painting results and a pilot user study.

CR Categories: 1.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; H.5.2 [Information Interfaces
and Presentation (e.g., HCI)]: User Interfaces—Graphical user in-

ACM Reference Format

Xing, J., Chen, H., Wei, L. 2014. Autocomplete Painting Repetitions. ACM Trans. Graph. 33, 6, Article 172
(November 2014), 11 pages. DOI = 10.1145/2661229.2661247
http://doi.acm.org/10.1145/2661229.2661247.

Copyright Notice

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

2014 Copyright held by the Owner/Author. Publication rights licensed to ACM.

0730-0301/14/11-ART172 $15.00.

DOI: http:/dx.doi.org/10.1145/2661229.2661247

terfaces (GUI);

Keywords: autocomplete, digital painting, repetition, user inter-
face, workflow, editing history, context, texture, analysis, synthesis

Links: ©DL I PDF

1 Introduction

Painting is a common practice for content creation, often involving
repetitive implements such as stipples, hatches, or brushes. Such
repetitions are an integral part of artistic styles and compositions.
Yet, they can be quite tedious for manual labor and too versatile for
fully automatic generation.

A central goal of digital painting research is to automate such rep-
etitions while allowing sufficient control and expressive power for
users [Winkenbach and Salesin 1994]. This has been greatly ad-
vanced in recent data driven methods (e.g. [Kazi et al. 2012; Lu
et al. 2013; Lukac et al. 2013]), but they impose a batch/sequential
order, in which the desired repetitions have to be prepared first (usu-
ally in the form of small exemplars) and then cloned to the desired
output regions through various control gestures. Such sequential
mode may break the continuous and spontaneous nature of paint-
ing flows. For example, users might not know a priori the desired
repetitions and would prefer to experiment on the go. Moreover,
such batch control is most suitable for large, homogeneous pat-
terned regions. More nuanced or detailed variations, as common
in real paintings, can require an excessive amount of exemplars and
gestures. Thus, it can be more natural and effective for users to
draw as usual, while having the system automatically detect and
assist potential repetitions.

We present an Ul system that uses past workflows to facilitate in-
teractive authoring of future repetitions (Figure 1). Users can paint
with our system as usual similar to ordinary digital painting tools.
Meanwhile, our system gradually records their past workflows and
analyzes their structure and color relationships. With enough rep-
etition detected, it can predict and auto-complete what the users
might want to draw in the near future (temporal ordering), around
the current drawing region (spatial proximity), or across similarly
colored or structured regions (contextual similarity). Our method
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eliminates the need for sequential clone and better adapts to local
painting variations. Furthermore, users can accept, ignore, or mod-
ify the auto-completes and thus maintain full control.

Autocomplete has been a core feature for common text editing and
programming IDE systems, for which our system can be considered
as a painting analogy. Our key idea is to treat workflow repetition as
aform of texture, and extend texture analysis and synthesis methods
[Wei et al. 2009; Ma et al. 2011] to provide a predictive interface for
sketching [Lee et al. 2011; Fernquist et al. 2011]. Workflows have
been found useful for a variety of applications [Grossman et al.
2010; Denning et al. 2011; Chen et al. 2011; Zitnick 2013]. In our
method, we use workflows for both predicting future drawings and
adapting them to the surrounding color and shape contexts.

The key challenge is to extend and integrate these methods for qual-
ity results and fluid interactions. We perform contextual analysis
[Lu et al. 2007; Guerrero et al. 2014] on the shape and color rela-
tionships among prior painting operations, from which we derive
predictions for potential future ones. These predictions serve as
extra constraints in a texture optimization framework [Ma et al.
2011; Ma et al. 2013], and help maintain nuanced contextual re-
lationships in synthesis. Moreover, these analysis and synthesis
are conducted incrementally around the spatial-temporal vicinity of
the current operation, and thus sufficiently efficient for interactive
painting. Unlike prior constrained drawing systems (e.g. [Maulsby
et al. 1989; Gleicher and Witkin 1994]) that require explicit user
specification, our method automatically detects potential relation-
ships in the background.

We evaluate our method via drawing results and a pilot user study.
In sum, our paper has the following contributions:

e A system to facilitate interactive painting of common repeti-
tions such as stipples and hatches;

e A predictive user interface design that observes ordinary
painting flows while reducing tedious manual labor;

e Algorithms to analyze painting workflows and to synthesize
new results with high quality and speed.

2 Previous Work

Suggestive sketching Drawing is a popular and yet challeng-
ing activity, and thus significant research efforts have been devoted
to design guided or suggestive drawing systems that use various
forms of data. For example, portrait sketching can be assisted by
analyzed face data [Dixon et al. 2010] or crowd-sourced sketches
[Limpaecher et al. 2013]. To help users draw a larger collection
of objects, Lee et al. [2011] display shadows extracted from web
images to interactively guide user progress, while Iarussi et al.
[2013] provide structural guides based on artistic principles. In
addition to static images or drawings, it is also possible to guide
novices through recorded workflows of experienced painters [Fern-
quist et al. 2011].

Our method follows this line of work, but uses past drawing work-
flows from the same user to guide future repetitions.

Data-driven sketching While the guided systems can help users
draw, they still have to deal with manual repetitions. To help ame-
liorate such tedious process, many systems have been designed to
automate the creation of repetitive drawings via data driven compu-
tation. One prime example is detailed textures or patterns [Lukac
et al. 2013; Lu et al. 2013; Lu et al. 2014; Cheema et al. 2014]
whose creation can fit well with the traditional copy-and-paste in-
terface scenario. Kazi et al. [2012; 2014] provide friendly gestures
to help create both static and dynamic elements.

Our method also follows a data-driven approach to help authoring
repetitions, but uses dynamic workflows instead of static patterns
or animated sprites.

Using workflows Chimera [Kurlander 1993] is an early system
for recording and editing graphical histories, including repetitive
operations. Recent years have seen the rise of methods that uti-
lize workflows in various forms, such as exploration [Bonanni et al.
2009], visualization [Callahan et al. 2006; Grossman et al. 2010;
Denning et al. 2011; Chen et al. 2014], tutorial [Kong et al. 2012;
Lafreniere et al. 2013], revision [Chen et al. 2011], stylization [Fer-
nquist et al. 2011], and beautification [Zitnick 2013]. These meth-
ods often rely on pre-recorded workflows, which, when not avail-
able, may be recovered through a certain extent via analysis [Fu
et al. 2011; Denning and Pellacini 2013; Hu et al. 2013; Dobos
et al. 2014]. Nancel et al. [2014] provides a comprehensive survey
of different conceptual models for workflow analysis.

We follow this line of work, but focus on the analysis and synthesis
of dynamic workflows for predictive painting repetitions.

3 User Interface
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Figure 2: User interface of our system. Similar to ordinary digital
painting tools, our system provides widgets (left pane) and a main draw-
ing canvas. However, our system can predict and auto-complete what the
user might want to draw in the future based on the detected repetitions in
recorded past workflows. Such predictions are shown directly in the main
canvas (red strokes), and the user can accept or reject via a simple hot key
(via the non-drawing hand) or brush-select specific regions. Please refer to
the accompanying video for live actions.

The user interface of our prototype system (Figure 2) shares the
similar visual design to modern sketching systems. Users can
sketch as usual while our system automatically records and ana-
lyzes the painting workflows in the background. The UI provides
two simple functions: auto-complete which predicts what the user
might want to draw next based on detected repetitions (Section 3.1),
and workflow clone which allows the manual copy and paste of
workflows (Section 3.2). Both functions are context-aware, i.e. the
synthesized workflows adapt to the shapes and colors of existing
drawings.

3.1 Auto-complete

Inspired by the auto-complete function in programming IDE tools,
our system automatically analyzes user’s painting workflows on the
fly and synthesizes what the user might draw in the future. The
auto-complete function is automatically invoked when the repe-
titions are detected without requiring additional gestures such as
specifying source or target regions.

Figure 3 shows an example where the user is hatching a coliseum
sketch for shading effects. As the more hatches are added, our sys-
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(¢) accept all prediction (d) brush select

Figure 3: Auto complete. When the user sketches the upper-right pane
in (a), our system detects the potential repetition and provides prediction
visualized in red color (b). The user can ignore the prediction and continue
drawing, accept all prediction via a hot key (c), or brush-select parts of the
prediction (d) (pink circle).
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(b) updated predtctlon

Figure 4: Online prediction update. The initial prediction, shown in (a),
does not meet user’s expectation, e.g. the fourth window on the bottom row
does not fit the frame well. The user can ignore the prediction and continue
drawing with a better left edge of the same window, and the system will
update the prediction accordingly in real-time (D).

tem automatically detects the repetition and predicts what the user
might want to draw following the current hatching direction and
density (Figure 3b). The user can ignore the prediction and continue
drawing, accept the prediction (via a hot key similar to IDE), or par-
tially accept the prediction with the selection-brush (Figure 3d).

The prediction is being continuously updated in real-time as the
user sketches. Figure 4 shows an example where the user is not
satisfied with the initial prediction and continue drawing until the
system provides satisfactory prediction.

This auto-complete function also works for more structured ele-
ments by considering color-shape contexts. For example, in Fig-
ure 5, the user adds decorative interiors to the windows. Based on
the detected repetition among existing window frames, our system
automatically propagates the newly added interior sketches to other
similar windows with individual adaptions.

By default, all predictions are drawn in the final colors. To help vi-
sualization, our system also allows customizing the colors for pre-
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(a) before + prediction

(b) after

Figure 5: Contextual prediction. When the user adds an interior struc-
ture to one window in (a) (the black one in the bottom row, third from the
left), our system detects repetitions in the rectangular window frames and
predicts the potential interior structures for other windows (shown in red).
Similar to Figure 3, the user can accept, reject, or brush-select the pre-
diction. Our auto complete adjusts to the shape context; notice that each
interior structure fits the surrounding window frame with slightly different
sizes and shapes in Figure 5b.

dictions, such as red and green for gray-scale sketches.

3.2 Workflow clone

Our autocomplete function does not predict all potential user in-
tentions, especially at areas without sufficient existing repetitions
or contexts. We thus provide an optional workflow clone function
similar to the clone brush in the Photoshop, where the user spec-
ifies both the source region to copy from and the target region to
clone to. Similar to previous systems [Kazi et al. 2012; Luk4c et al.
2013], our system offers control in the form of 1D paths and 2D
regions as visualized in Figure 6 and Figure 15.

Our workflow clone has two unique aspects. First, the cloning is
conducted in situ within the same painting instead of from another
source or exemplar and thus is more efficient and can achieve higher
predictability on the synthesized outcomes. Second, instead of final
pixels, our system clones the fine-grained workflows, which contain
rich information that allows the synthesis of new drawings adapting
to the contexts of the target areas.
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(b) workflow clone

Figure 6: Context-aware workflow clone. In both examples, the user spec-
ifies the source (via the blue stroke) and targets (via the green stroke). Prior
methods, without knowing the workflows, cannot automatically produce new
elements fitting the contexts such as window frames (a). Our system, with
the knowledge of detailed workflows, can automatically synthesize outputs
adaptive to the context in terms of properties such as position, orientation,
and shape, as shown in (D).

4 Method Overview

Our main idea is to treat repetitive painting operations as a form of
texture [Wei et al. 2009], and extend the sample-based methods in
[Ma et al. 2011; Ma et al. 2013] for representation, analysis, and
synthesis. We define each painting operation as a continuous user
stroke without lifting the pen, such as a stipple, a hatch, or a brush
stroke. Below, we first briefly summarize [Ma et al. 2011], followed
by an overview of our method.

The method in [Ma et al. 2011] synthesizes geometric elements via
data driven texturing. The input consists of a small set of elements
(e.g. a small pile of pebbles), and the output is a potentially larger
set of elements that resemble the input locally. The output also
obeys additional user controls such as global shape and orientation.
Each element is represented as a collection of point samples. An
energy optimization method is used in [Ma et al. 2011] to synthe-
size outputs that satisfy both global user controls and local texture
similarity to the inputs. Prior methods such as [Kazi et al. 2012;
Kazi et al. 2014] have successfully adopted [Ma et al. 2011; Ma
et al. 2013] for interactive painting.

»_”_‘prediction

current drawifig—"

past drawing as inp

Figure 7: Iilustration of our algorithm via a few user sketches. Using past
drawings as input (left region), our method predicts what might be drawn
next based on partial matching of the current progress (right region). In
particular, the green strokes indicate the just completed drawing, and are
used to find similar prior drawn strokes in gray (with only the most similar
subset shown for clarity). The upper-right part of the matching gray strokes
is then used to predict what the user might draw next (the purple strokes).
The yellow circles indicate matching neighborhoods.

Our method follows a similar strategy, but deals with dynamic op-
erations instead of just static appearances, as well as online predic-
tion instead of just batch synthesis. The basic ideas are illustrated in
Figure 7. We represent each painting operation (short stroke in this
particular example) as a collection of samples that record position,
appearance, time stamp — relevant information for reproducing the
original painting workflow.

For workflow clone (Section 3.2), we use the recorded painting op-
erations as the input exemplar and synthesize the output operations
by treating our operation samples as the geometry samples in [Ma
et al. 2011]. The main differences lie in the dynamic nature of our
workflows and the need of automatic adaption of painting contexts.

For auto-complete (Section 3.1), we use current user drawings as
partial neighborhoods to find potential candidates. In other words,
all predictions are based on the similarity match between new and
past user operations. We use a small recent temporal window of
past operations as input exemplars, for both efficiency and guaran-
tee the use of most recent history for synthesis. We display the most
similar match as prediction under our UI canvas.

We present more details of our method in Section 5 (representations
and measures) and Section 6 (analysis and synthesis).

5 Workflow Texture

We consider workflow repetitions as a form of texture [Wei et al.
2009] with the common assumption of locality within context:

Locality — each unit (e.g. image pixel, mesh vertex, element sam-
ple) is characterized by its local neighborhood. The locality
assumption greatly simplifies the complexity of computation
and yet satisfies the repetitive nature of textures.

Context — the local repetitions are controlled by high level con-
texts in the form of maps [Lu et al. 2007; Wei et al. 2008] or
structures [Kazi et al. 2012; Lukac et al. 2013].

We follow a similar convention for defining workflow texture - dy-
namic workflow consisting of a collection of repetitive operation
units. However, their formations can be progressively variant, in-
fluenced by the surrounding context.

With this definition, the goal of workflow texture is to interactively
generate output operations that are locally similar to the past inputs
while adapting to the output context. Below, we first describe our
representation of workflow texture, followed by the core concepts
of neighborhood and similarity measure.

5.1 Representation

Operation A workflow texture is composed of basic painting op-
erations. Each operation is a continuous user gesture without lifting
the pen, e.g. a stipple, a hatch, a brush stroke, etc. Certain opera-
tions, e.g. long strokes that usually correspond to skeletons or out-
lines, are treated as a special kind of context operations to capture
the control structure of the painting.

We sample each operation op uniformly (3-pixel spacing in our cur-
rent implementation), and for each sample s € op, we store its (1)
spatial parameters p(s) that record the position and direction at s,
(2) appearance parameters a(s) such as color, pressure and size,
and (3) temporal parameters t(s) that include the global time stamp
and a sample-id for the relative position within op. For simplicity,
we normalize the sample-id to be a scale value within [0, 1], where
0 and 1 represents the starting and ending positions of op, respec-
tively.

In sum, we represent each operation op as a collection of samples
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{s}, and represent each sample s as:
u(s) = (p(s),a(s), t(s)) M

Neighborhood Similar to [Ma et al. 2011; Ma et al. 2013], we
define the neighborhood n(s) around each sample s as the set of all
samples within its spatial-temporal neighborhood with user speci-
fied size. The neighborhood of an operation op is the union of its
sample neighborhoods:

n(op) = |J n(s) @

s€op

Our algorithm uses this operation- instead of sample-centric neigh-
borhoods as such element-based representation can work better
for more complicated structures as shown in [Landes et al. 2013].
n(op) can capture relationships within and across elements as well
as with contextual operations. See Figure 8a for illustration.

(b) measurements

(a) neighborhoods

Figure 8: Neighborhoods and measurements. The leaves in (a) are drawn
along the green branch from top-left to bottom-right. Each leaf can be con-
sidered as a logic unit or element. We use different colors to illustrates
different types of neighborhood operations around the central red operation
op: across other elements in similar positions (right-most strokes, shown in
blue), within the same element (shown in yellow), and the context (shown in
green). Operations (cyan) drawn after op are not part of the neighborhood
due to temporal causality. (b) shows the measurement of neighborhood sim-
ilarity. Specifically, we pair samples from different operations with nearest
distance to each other (as visualized by the dashed lines).

5.2 Similarity measure

Analogous to [Ma et al. 2011; Landes et al. 2013], the analysis
and synthesis of workflow textures hinge on the core formulation
of neighborhood similarity. Below, we define similarity in the order
of samples, operations, and neighborhoods.

Sample similarity We measure the difference between two sam-
ples s’ and s as:

i(s5) = (Bls' o), (s, ), B, 9)) @)

which includes their difference in structure p, appearance a, and
time-stamp t. « and /3 are two weighting parameters which will be
discussed in Section 7. Similar to [Ma et al. 2011; Ma et al. 2013],
Equation (3) is computed with respect to the local coordinate frame
of s. This local frame is sketched by the user under our workflow
clone function, and inferred automatically by our system under our
auto complete function (to be discussed in Section 6.2).

Autocomplete Painting Repetitions . 172:5

Operation similarity Since each operation is characterized by its
samples, we can represent the difference between two operations
op’ and op via their constituent samples:

u(op’,op) = {u(s’, s)|s’ € op’, s € op} 4)
‘We match the sample pairs s € op and s> € op’ to minimize the to-
tal distance. Thus, given one sample s € op, its corresponding sam-
ple s> € op’ is uniquely determined by finding the one with nearest
distance. Via different relative weighting in Equation (3), it is pos-
sible to emphasize specific aspects of the operation attributes. An
example is illustrated in Figure 8b, in which large spatial weight-
ing emphasizes local difference (red region) while large sample-id
weighting emphasizes global difference (yellow region). More de-
tails about weighting are in Section 7.

Neighborhood similarity measure We measure the dis-
similarity between two neighborhoods n(op,) and n(op;) by sum-
ming up the distances of themselves as well as their neighborhood
operations:

In(opo) — n(op:)|* = [G(opo, s0) — (opi, si)|” +
> [G(ops, 0po) — T(opy, opi)[* )
op,€En(opo),op;En(op;)

In particular, the first term measures the dis-similarity between the
two operations with respect to their central samples:

s € op} (6)

And the second term measures dis-similarity of neighborhood oper-
ations. Both terms can be expanded into aggregated dissimilarities
between sample-pairs.

u(op, s) = {u(s,s)

To observe operation topology, we match sample-pairs with the
nearest sample-id. For example, each sample-pair U(s},S,) €
u(op;, op,) matches sample-pair u(s;, s;) € u(op;,op;), where
si € op; has the closest sample-id to s, € op, for all samples in
op;, and both s, € op, and s; € op; are determined via Equa-
tion (4). The matching pairs op;,, op; are computed by extending
the usage of the Hungarian method [Kuhn 1955] in [Ma et al. 2013]
from samples to operations.

6 Workflow Computation

Given the dynamic and interactive nature of our system, we extend
texture optimization [Kwatra et al. 2005; Ma et al. 2013] for in-
cremental analysis and synthesis. Let Z be the input workflow and
O the incrementally synthesized output, both sequences of opera-
tions ordered by their time-stamps. We compute the next output
unit op, € O via the following formulation:

E(opo;I) = Olg}ignz [n(opo) — n(0p¢)|2 + O(opo) @

where op; indicates the corresponding input unit with similar neigh-
borhood to op,. The first energy term above measures the neigh-
borhood similarity between op; and op, as defined in Equation (5).
The second constraint term, © (op, ), corresponds to the prediction
u(op,) computed from our analysis stage in Section 6.2.

6.1 Workflow synthesis

Our synthesis method is built upon the synthesis framework of [Ma
et al. 2011]. However (1) instead of specifying the constraints ex-
plicitly, we derive them from our analysis in Section 6.2, and (2) in-
stead of batch optimizing all outputs, we incrementally synthesize
each output. For each output we start with multiple initializations,
and pick the most plausible one via search and assignment steps.
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Figure 9: Synthesis initialization. Each op; is initialized from op/; for

i=1,2,3

6.1.1 Initialization

We initialize next operation based on local similarity within the past
workflow. As inspired by k-coherence for texture synthesis [Tong
et al. 2002; Wei et al. 2009], we initialize its next operation op, of
the (last drawn) operation op;, via:

u(opo, op;,) = u(opi, op;) ®)

where op; is a matching operation of op;,, and op; is the next oper-
ation of op;, as illustrated in Figure 9. The potential initialization
opo can be derived by minimizing the following energy equation:

Bop)= ¥ Y

S0€0Po 55E€0P,

u(sy) — (si, s3)|”

(C)]

where w(s;, s}) is a weighting parameter discuss below. For each
initialization op,, we go through the search and assignment steps
below for further optimization, and select the most plausible one,
i.e. with lowest energy in Equation (7).

w(ss, s3) |u(so) —
s;) [u(so)

6.1.2 Search step

During this step, we search for multiple matching operations {op; }
within a local spatial-temporal window of op, whose neighbor-
hoods are similar to n(op,). Specifically, for each op;, we first cal-
culate the neighborhood similarity |n(op,) — n(op;)|* via Equa-
tion (5). We then select all other matching operations whose dis-
similarity is smaller than 2 |n(opo) — n(0pmin) |2, where 0pmin is
the one with smallest dissimilarity value.

6.1.3 Assignment step

Our assignment step resembles [Ma et al. 2011] except that we as-
sign an operation (a group of samples) rather than a sample. For
clarify of presentation, we describe how to deal with the two terms
in Equation (7) individually, and sum everything up in the end.

Neighborhood term For each matching neighborhood operation
pair (op;, op;) and (opo, op},) from initialization, U(op;, op;) pro-
vides a prediction for U(op,, op;,):

u(opo, op;,) = u(op:, op;) (10)
which can be expanded into the constituent samples:
U(so,5,) = U(si, s}) (11)

We can expand the first term in Equation (7) as follows:

SO DD

80€0po ophEN(0poy) SoEOP, (]2)

w(si, 57) [u(so) — u(sy) — Ulsi, ;)|

where op;, runs through every operation within n(op, ), and op; is
the matching neighborhood operation of op;, within n(op;). And
for each sample s, € op,, s, runs through every sample within
op,, and (s;, s;) is the matching sample-pair of (s,, s;,) between
(opi, op;). w(si, s;) is a weighting parameter that will be discussed
below.

Constraint term By conducting global analysis and local analy-
sis on the similarity operations {op;} extracted in the search step,
we can get a prediction T(op,) (Section 6.2) for the properties of
op,. We use the prediction as an additional constraint for synthesis.
Similar to the neighborhood term above, we can expand the second
term in Equation (7) as follows:

Ec({so}) = Z [u(so) — u(s,)|? (13)

So€0po

Sum up Thus, by summing all the energy functions above, we
can calculate the next operation by minimizing:

E(opo) = En({s0}) + Ec({50}) (14)

6.1.4 Weighting

For both the search and assignment steps above, we modulate each
sample-pair with a weighting parameter. This is because different
sample-pairs may capture structures with different topological or
geometric importance. For example, close sample pairs can rep-
resent joint structures which are important for characterizing the
semantic shape/structure of an object, e.g. the window edges in
Figure 4, and thus need to be well maintained during the synthesis.
Following the smooth synthesis in [Ma et al. 2013], we assign a
similar Gaussian falloff parameter to weight each sample-pair, but
we only consider the spatial domain in the Gaussian kernel:

w(sq, s)) = exp(—w) (15)

where |p(s;) — p(s;)| is the distance between sample s; and s},
and o is a normalize parameter set to 10 in our implementation.

6.2 Workflow analysis

As illustrated in Figure 10, operations can relate to one another via
(shared or individual) contexts, can be globally aligned, or can be
random and unpredictable. Our system needs to be able to figure
out such potential relationships to provide good predictions and to
adapt the synthesis to the local context variation.

Intuitively, the way to predict a new operation op, (including prop-
erties like position, direction, color, etc.) is to apply the drawing
styles of similar operations drawn before. To do that, we perform
contextual analysis on the set of operations similar to op,, to derive
how they are drawn in their own contexts and utilize such informa-
tion to predict the properties of op, in a new context. The predic-
tion u(op,) will be the input to our synthesis stage (Section 6.1).
In particular, we need to predict the properties u(op,) as the col-
lection of u(s,) for each s, € op,, including spatial, temporal, and
appearance information as in Equation (1). Based on the observa-
tions illustrated in Figure 10, we consider two potential frames for
each operation: local (as determined by a nearby context operation),
and global (as determined by the default global coordinate system).
Thus our analysis is performed under two frames separately.

Local analysis The goal of local analysis is to determine how
a prediction op, should be constrained by its context operations
{op,}, which are determined as the long operations within the
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Figure 10: Context analysis examples. (a) the directions of leaves (T1
to r4) align to a shared (long) context stroke, and the colors are globally
consistent. rs indicates a resulting prediction. (b) the directions of leaves
(s1 to sa) are globally aligned, and the colors are locally constrained by
the long context branch. ss indicates a resulting prediction. (c) the leaves
in the blue region align to the context strokes (t1 to ta), while are random
in the yellow region.

neighborhood of op,. By long, we mean at least twice the length of
opo. If no such long operations are around, we consider the absence
of local context and resort to the global analysis below.

The local analysis is conducted for each op;, € {op;,}. In order
to know how op, should be constrained by a specific op, (e.g.
the strokes of leaf r5 relative to the long context stroke in Fig-
ure 10a), we perform statistical analysis among the matching set
{1(op;, op;)}, where each op; is a matching operation of op, (e.g.
the leaves r1-r4 in Figure 10a) and U(op;}, op;) is the matching pair
of U(op;,0p,). Note that the context operations can be individ-
ual (e.g. the short branches in Figure 10c) or shared (e.g. the long
branch in Figure 10a).

Specifically, for each sample-pair U(s,,, So) € U(op,, 0po), we ex-
tract its matching sample-pairs {ti(s}, s;)} from {t(op}, op;)} (as
visualized by dash lines in Figure 10a and Figure 10b). Statistically,
{u(s}, i)} can be characterized as:

(ﬁ(s%7si)7a(5%v5’i)) (16)

where T(s}, s;) and o(s}, s;) represent the mean and deviation of
set {u(s;, s;)}. We use U(s},s;) as the prediction for U(s;, so)
and o (s}, s;) as the plausibility of the prediction.

Global analysis The computation for global analysis is similar to
the local analysis, except that there is no context operation. Specif-
ically, for each sample s, € op,, we extract its matching samples
{si} among its matching operations {op; }, and compute the mean
and deviation of the set {u(s;)}:

(u(si), o(si)) (17
Similar to local analysis above, U(s;) provides a prediction for

u(so), and o (s;) indicates the plausibility of the prediction.

Prediction quality From local and global analysis, we can derive
two separate predictions. However, as exemplified in Figure 10, the
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prediction quality may vary from case to case depending on whether
the contexts are local or global and if structure, color, or some other
combinations of properties are involved.

Accordingly to above observation, we consider each property (e.g.
direction and color) separately. For a particular parameter u;(s,) €
u(s,), we formulate the quality of its prediction W;(s,) (both for
local and global analysis) as:

Qi (s.)) = exp(~ 7Ll (18)
where o1 is parameter dependent on the specific u;(so) € u;(so)
(discussed in Section 7). In particular, if the size of matching set
({u(op;, opi)} in local analysis and {u(s;)} in global analysis) is
small (less than 3), we think such prediction is not reliable, and set
each Q(U;(s,)) to be 0.

Prediction By combining all predictions (local prediction for
each context operation and global prediction), we can calculate the
final prediction by minimizing the following energy function:

Bulp))= Y. Y

50€0po op, €{op)}
Q(u(so)) [u(so) —u(so)[*
+Q(U(s0,5)) [u(so) —u(s;) —ulso, 55)|”

where s, € op,, is the matching sample of s, € op, determined
by Equation (4), and each prediction is weighed by their prediction
quality.

(19)

7 Implementation

Neighborhood We use a temporal-spatial neighborhood similar
to [Ma et al. 2013]. As exemplified in Figure 8a for the red stroke,
we extract its 2 previous temporal operations (yellow strokes) and
nearby spatial operations within a distance of 0.05 canvas size. For
acceleration, instead of using every operation within the aforemen-
tioned spatial vicinity, we extract at most 2 longest context opera-
tions (the long green stroke) and at most 4 matching operations that
are temporally the nearest (the blue strokes), both upper bounds
subject to availability. The notion of matching operation is defined
below.

Search window For the search step in Section 6.1, we search
within a local temporal-spatial window for similar operations.
Specifically, we use a temporal (workflow) window size of 30 pre-
vious operations, and a spatial window size of 0.05 (same as the
spatial neighborhood size above).

Matching operation Presetting a similarity threshold for selec-
tion of matching operations is nearly impossible as such threshold is
usually content-dependent (e.g. the dis-similarity between stipples
is much smaller than coliseum windows), thus we adopt an online
method to measure such threshold dynamically. Specifically, we
find the most similar operations within the aforementioned search
window as a reference, and define as matching operations those
with dissimilarity smaller than twice the smallest dissimilarity.

For acceleration, instead of matching with the whole temporal-
spatial neighborhood, we separate the process into two steps: tem-
poral matching followed by spatial matching. Specifically, we first
use the temporal neighborhood to search the candidate matching
operations (e.g. the blue strokes in Figure 8a), from which we use
spatial neighborhood for further sifting (e.g. the blue stroke on the
right side of branch in Figure 8a). The similarity thresholds in both
steps are described above.
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Sample parameters We set the appearance weighting « in Equa-
tion (3) to be 0.1 for neighborhood matching, and 0.9 for analysis
in Section 6.2. So in Equation (14), the painting parameters are
mainly influenced by the second constraint term. For the temporal
weighting 3 in Equation (3), it includes weightings for both global
time stamp (1 and sample-id $2. For (1, we set it to be 0 in spa-
tial neighborhood matching and infinity in temporal neighborhood
matching to enforce same drawing order. For (2, we set it to be
infinity for neighborhood matching to emphasize global difference
and O for context analysis in Section 6.2 to emphasize local differ-
ence.

For parameter o1 in Equation (18), the value is dependent on the
specific attributes. For position and direction, we set o1 to be 5 and
0.1, respectively. For color, we set o1 as 0.1 times the maximal
color value, e.g. 25 for [0, 255].

8 Evaluation

We have conducted a pilot user study to evaluate the usability and
quality of our system. The study considers the following modes:
fully manual drawing as in traditional tools, our auto-complete
function, and our workflow clone function.

8.1 Participants and apparatus

Our participants include 1 professional artist and 9 computer sci-
ence graduate students with background in graphics. All par-
ticipants are experienced in digital sketching and software tools.
Throughout the study, participants performed the sketching tasks
on a 13 inch laptop with a Wacom tablet.

8.2 Procedure

The study consists of four sessions: warm-up, target sketch, open
sketch, and final interview. On average, the entire study takes about
two hour per participant.

Warm-up session The warm-up session is designed to familiar-
ize the participants with the Ul and various modes of our system.
The tasks consist of filling in the interiors of simple object contours
with stipples and hatches. One of the authors guided participants
throughout the entire process.

Target sketch session The goal is to measure the efficiency
among three different sketching modes. Each participants was
asked to imitate the shading style of two reference images created
by our collaborating artist, and shade the given outline shapes with
stipples and hatching (Figure 11). The three sketching modes are
arranged among participants in counter-balanced orders.

Open sketch session The goal is to observe participants behav-
ior and identify potential usability issues of our system. Participants
were free to pursue open-ended drawing using our system with the
only requirement of creating drawings with at least a certain amount
of repetitive content, e.g. for shading or structures. One of the au-
thors accompanied the participants through the session and encour-
aged them to try out different features provided in the system.

8.3 Results and discussion

Figure 12 provides quantitative measures of completion time and
painting operations counts for the target sketch tasks in Figure 11.
The result shows that using clone & auto modes yields 224% &
73% higher average operation count per minutes for stippling (Fig-
ure 11c) and 73% & 127% higher for hatching (Figure 11d), against
the fully manual mode. Both modes enable participants to finish

(¢) stippling output (d) hatching output

Figure 11: Target sketch tasks. We specify the object shapes and boundary
contours (top row), and ask the participants to hatch/stipple the interiors to
achieve the desired shading and artistic effects (bottom row).

the tasks within less time while accomplishing more strokes on the
canvas.

The result also suggests that clone is most effective for stippling
while auto performs better for hatching. We learned from the post-
hoc interview that participants used the workflow clone function
more frequently for stippling because stipples are isotropic and thus
the outcomes are more predictable, while the hatching patterns are
anisotropic and dependent to the local context and thus the partici-
pants found auto more predictable and easier to use.

Time (min) # Operation
12 T T 5000 , ,
10 4000
8
3000
6
2000
4
2 1000
0

stippling hatching stippling hatching

[ full . clone mumm. auto |

Figure 12: Performance measure for different targets. We measure the
completion time and operation number for stippling (Figure 11c) and hatch-
ing (Figure 11d) among three modes: full — fully manual drawing, clone —
workflow clone, auto — auto-complete.

Figure 13 shows the ratio of system-generated operations (labor re-
duction) and undo operations (undo usage) to the total number of
operations. The labor reduction measure indicates that both auto
and clone condition help users avoid significant amounts of repe-
tition. The undo usage chart shows that auto mode requires 77%
and 73% less undo operations than clone mode for stippling and
hatching. When asking about the difference, some participants
commented that sometimes clone takes certain amount of trial-and-
error to achieve desired outcome. In particular, small source area
may lead to visible repetition while larger source area may lead to
unexpected or undesired variations.

Finally, Figure 14 provides subjective feedbacks from participants
about the functions in our system. To further clarify the usability of
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Figure 13: Operation usage. Labor reduction (left) measures the ratio
of system-generated operations to all operations. Undo usage (right) is
measured by the ratio of undo to all operations.
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Figure 14: User feedback. We evaluate our workflow clone function and
auto-complete function with and without the selection brush. All quantities
are expressed as mean=tstd in a 7-point Likert scale.

auto mode, we collect the rating for auto with and without selection
brush (Figure 3d) respectively. Result shows that overall partici-
pants are more satisfied with the auto mode and considered it fits
more naturally to the ordinary painting flows than the clone mode.
Participants also seem to prefer the additional flexibility provided
by the selection brush despite the expense of additional gestures.

9 Additional Drawing Results

Figure 15 demonstrates a color drawing example. The user first
draws the branches and leaf outlines (with the help of our auto-
complete), and then decides to add interior veins for all leaves.
Manually doing so would require a lot of repetitions especially
given the varying colors and shapes of the leaves. Using our sys-
tem, the user just needs to edit one leaf and having similar changes
automatically propagated to other leaves.

Figure 15 also demonstrates the ability of color in addition to struc-
ture adaption of our system. Specifically, if the user draws leaves
with colors close to the surrounding branches, our method will
choose the local consistency to have the newly synthesized leaves
with colors similar to the branches. In contrast, if the leaves have
similar colors that are sufficiently different from the branch colors,
our method will choose the global consistency to have leaves main-
tain similar colors among themselves.

As described in Section 3.2, our system provides both path and
region gestures for workflow clone, which works better than tra-
ditional clone for adapting the cloned drawings with the existing
context. Figure 6 demonstrates the path gesture, while Figure 16
demonstrates the region gesture. With the assistance of our system,
it is possible for novices to draw a variety of sketches with high
amount of repetitions as demonstrated in Figure 18.
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(b) after

Figure 15: Color drawing example. The user first draws a bunch of willow
branches and leaf outlines via our system, then decides to add interior veins
to all leaves. Instead of manually repeating the process, the user just edits
one leaf (indicated by blue circle) and our system predicts the potential
strokes for other leaves (shown in red), as in (a). Similar to Figure 3, the
user can accept, reject, or brush-select the prediction. Our auto-complete
adjusts to the color-shape context; notice that each interior structure fits
the leave outlines with slightly different colors and shapes as in (b). For
visualization, each magenta area is enlarged into the top-left red area.

10 Limitations and Future Work

The scope of our auto-complete function depends on the kinds and
amounts of repetition that can be detected. It might miss potential
repetitions (false negatives) as well as provide inaccurate predic-
tions (false positives) during sufficiently rapid or complex context
changes, as exemplified in Figure 17. Thus, a potential future work
is to incorporate better pattern detection methods such as [Guy et al.
2014; Huang et al. 2014].

While striving for a simple Ul with minimal user gestures, our
design might not accommodate more complicated user intentions,
such as perspective foreshortening as in [Kazi et al. 2012]. Achiev-
ing the best balance between simplicity and functionality can be a
good topic.

Our current method is restricted to simple operations consisting of
stipples, hatches, or strokes. A good next step is extension for richer
set of digital painting and photo editing operations as well as other
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)

/S
(2

)

(b) workflow clone

Figure 16: Context-aware workflow clone. Our system provides both path
(shown in Figure 6) and region (shown here) control for workflow clone.

Figure 17: Limitation
case. Our prediction can
_ fail with rapid changing
context, such as the right-
most half window.

interactive tasks [Cypher 1991].

Our current prototype focuses on painting workflow from a single
user in a single session. Extending the workflows to multiple users
and/or sessions can provide more variations for the prediction as
well as further applications such as analyzing drawing styles, gen-
erating tutorials, controlling the variations of repetitions, and trans-
ferring or combining styles from multiple artists or paintings.
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Figure 18: Example sketches produced by participants via our system with the corresponding statistics in number of operations and drawing time in minutes.
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