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ABSTRACT Different rendering styles induce different levels of agency and user behaviors in virtual reality
environments. We applied an electroencephalogram-based approach to investigate how the rendering style of
the users’ hands affects behavioral and cognitive responses. To this end, we introduced prediction errors due
to cognitive conflicts during a 3-D object selection task by manipulating the selection distance of the target
object. The results showed that, for participants with high behavioral inhibition scores, the amplitude of the
negative event-related potential at approximately 50–250 ms correlated with the realism of the virtual hands.
Concurring with the uncanny valley theory, these findings suggest that the more realistic the representation
of the user’s hand is, the more sensitive the user becomes toward subtle errors, such as tracking inaccuracies.

INDEX TERMS Virtual reality, cognitive conflict, prediction error, virtual hand illusion, EEG, body
ownership.

I. INTRODUCTION
Recent advances in computer graphics hardware and ren-
dering engines have enabled the creation of realistic virtual
characters and environments in real time. However, a more
realistic rendering style or a more immersive virtual envi-
ronment does not always induce the preferred results or
better user performance. For example, it is well known that
near-human characters can produce negative audience reac-
tions [1]. Schuchardt andBowman [2] also found that the ben-
efit of a more immersed virtual environment was only shown
in a subset of spatial understanding tasks in their experiment.
Choosing the right visual appearance is particularly important
in therapeutic applications of VR, such as phobia treatment,
so that the patient will experience the appropriate level of
realistic experience without triggering a traumatic negative
effect [3].

Researchers have been investigating the underlying psy-
chological and neurological processes that induce different
reactions towards different visual styles. Yuan and Steed [4]
reproduced user responses in the classic rubber hand illusion

experiment with immersive virtual reality and found that
using an abstract hand style negated the illusion. González-
Franco et al. [5] further identified a P450 potential and an
event-related desynchronization of the mu rhythm in the
motor cortex when a virtual threat was imposed on one real-
istically rendered virtual hand of the subject. Perani et al. [6]
found that watching a video recording of the movements
of realistic hands activated a visuospatial network, which
included the right posterior parietal cortex. In contrast, watch-
ing an abstract-like hand elicited little engagement of right
hemispheric structures. Similar activation of brain regions
related to motor planning have been reported previously
only in response to realistic rendering styles [7], [8]. Apart
from changes in visual style stimuli, deviant changes in
color [9], [10], image contrast [11] and spatial frequency [12]
in stimuli are also known to create a visual mismatch negativ-
ity (MMN) [13]. TheMMN reflects an important electrocorti-
cal mechanism to enable attention towards important changes
in the environment. Some researcher also generalizes it as
prediction error signal [14] which is the result of cognitive
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FIGURE 1. Our EEG-based experiment evaluated the interaction
techniques in VR by measuring intentionally elicited cognitive conflict.

conflict when there is a mismatch between the perceived
information and the required response [15], [16].

Building upon this line of research, we investigated how
different rendering styles of a user’s hand affect behavioral
and cognitive responses during a fundamental user interaction
task in an immersive virtual environment, namely, 3D object
selection through direct 3D inputs (tracked hand motions).
To this end, we introduced a prediction error object-selection
paradigm for VR environments by manipulating, on a subset
of trials, the selection distance of a target object and provid-
ing incorrect visual feedback that was perceived too early
(figure 1). The discrepancy between the user’s prediction
and the system’s action results in prediction errors and an
accompanying negative event related potential (ERP) compo-
nent with a fronto-central scalp distribution at approximately
150-200 ms [17], [18]. Note that this error was not self-
generated, and thus, the frontal negativity was different from
the error-related negativity (ERN). Furthermore, since the
virtual hand was synchronized to the participant’s actual hand
movements, ownership can be assumed. Thus, the resulting
negativity is different from the observational error that peaks
at approximately 300-400 ms [19].

The research goal of this paper was to investigate the fea-
sibility of using cognitive conflict based on prediction errors
to evaluate the interaction between rendering styles and the
feeling of presence during a 3D object selection task in VR.
We assumed that an increasing sense of presence in VRwould
be associated with more pronounced cognitive conflict in
case of prediction errors. Under this context, we tested the
following two hypotheses:
• Hypothesis 1: Different rendering styles will not affect
behavioral measurements.

• Hypothesis 2: Different rendering styles will affect the
users’ response towards errors, which can be measured
by the amplitude of the ERP negativity.

II. EXPERIMENT AND METHODOLOGY
A. PARTICIPANTS AND ENVIRONMENT
EEG data were recorded from 32 right-handed male par-
ticipants to determine the prediction error effect for three
different rendering style of hand conditions with 95% power
based on G∗Power [20]. The median age of the participants

FIGURE 2. Experimental design.

was 22.7 years, with a range of 20-26 years. Following an
explanation of the experimental procedure, all participants
provided informed consent before participating in the study.
This study obtained the approval of the institute’s human
research ethics committee of National Chiao Tung Univer-
sity, Hsinchu, Taiwan and was conducted in a temperature-
controlled and soundproofed room. None of the participants
had a history of any psychological disorders, which could
have affected the experiment results.

B. VR SETUP
Our experiment used the HTCVive [21] as the head-mounted
display. The Vive uses an OLED display with a resolution
of 2160 x 1200 and a refresh rate of 90 Hz. The user’s head
position was principally tracked with the embedded IMUs,
while the external Lighthouse tracking system cleared the
common tracking drift with a 60 Hz update rate.

Participants’ hand motions were tracked with a Leap
Motion controller attached to the front of the HTC Vive. The
Leap Motion controller tracked the fingers, palms, and arms
of both hands up to approximately 60 cm above the device.
The tracking accuracy has been reported to be 0.2 mm [22],
and the latency has been reported to be approximately 30 mil-
liseconds [23]. (See figure 1.)

C. EEG SETUP
In this EEG-based experiment, each participant wore an EEG
cap with 32 Ag/AgCl electrodes, which were referenced to
linked mastoids. The placement of the EEG electrodes was
consistent with the extended 10% system [24]. The contact
impedance was maintained below 5k�. The EEG record-
ings were collected using a Scan SynAmps2 Express system
(Compumedics Ltd., VIC, Australia). The EEG recordings
were digitally sampled at 1 kHz with a 16-bit resolution.

An assistant helped the participants put on the EEG cap
first, followed by the HMD.We directly put the top belt of the
HTCVive on top of the central channel of the EEG cap. Inter-
estingly, since the EEG channels were pressed firmly onto the
scalp, they provided cleaner signals. However, participants
also found these firmly pressed EEG channels uncomfort-
able. Thus, we manually adjusted the top belt of the Vive to
avoid or reduce the pressure applied by the EEG channels.
(See figure 1.)

Each participant performed the 3D object selection task
with their dominant hand tracked by the Leap Motion con-
troller in VR. Figure 2 displays the scenario for a single trial.
Each trial was seven seconds long. In the first two seconds,
each participant looked at a fixation screen with his right
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FIGURE 3. Change in the selection distance. ‘r’ is the normal radius, and
‘D’ is the changed radius that elicited the cognitive conflict.

FIGURE 4. Top subfigure shows the scene of experiment 2. Each
participant was instructed to touch cube 1 and then to reach for cube 2.
The three subfigures at the bottom are the three hand styles used.

hand on the lap. Afterward, two cubes were displayed on
a table. The participant was instructed to reach and select
(touch) cube 1, and then cube 2. The cube would turn red
when it was touched. The participant was expected to finish
the task within 5 seconds. Otherwise, the trial was stopped
and marked as incomplete.

The selection distance of the second cube changed in 25%
of the trials, such that 75% of the trials used distance ‘r’
(D1) and the remaining trials used distance ‘D’ (D2) (See
figure 3). Note that although we analyzed the ERP only for
cube 2, the two-cube setup was designed to ensure that the
participants approached the second cube with similar hand
motions.

There were three levels of the rendering style of the virtual
hand: a realistic hand (H1), a robotic hand (H2), and a 3D
arrow (H3) (Figure 4, bottom). The experiment consisted of
three sessions, with one session for each hand style. Each
session consisted of 120 trials. The order of the sessions was
counterbalanced.

At the end of the experiment, the participants were pre-
sented with two sets of questionnaires. The first questionnaire
asked for subjective ratings regarding the level of realism and
personal preference towards each of the three different hand
styles. The second questionnairewas the BIS [25], which con-
tained 24 questions. The BIS questionnaire is commonly used
to evaluate punishment sensitivity due to aversive events,
such as conflict, which has been shown to correlate with ERP
amplitudes [26].

Overall, the experiment used a 3 by 2 repeated measures
factorial design with two factors: hand style (realistic hand,
robotic hand, and 3D arrow) and selection distance (D1, equal

FIGURE 5. Average of task completion time (in sec) for all participants

to the size of the cube; and D2, twice the size of the cube).
On average, the experiment took about two hours, including
the initial setup of the EEG cap, the HMD, and the completion
of the questionnaires.

D. EEG DATA ANALYSIS
EEGdata processingwas performed using the EEGLAB tool-
box inMATLAB. Raw EEG signals were filtered using a 0.5-
Hz high-pass and a 50-Hz low-pass finite impulse response
(FIR) filter. Subsequently, the data were downsampled to
500 Hz and subjected to the visual inspection of the artifacts.

Subsequently, an independent component analysis (ICA)
was applied [27], and each epoch was extracted from 200 ms
from the onset of the touching event for cube 2 to 800 ms
after the response. A final artifact rejection was done on the
epoched data by visual inspection. The EEG signals, without
the components related to eye artifacts and muscle activity
with a spectral peak above 20 Hz, were reconstructed using
the back-projection method to selected channels to analyze
the event-related potentials (ERPs).

Following [26], [28], [29], we calculated the amplitude of
the prediction error negativity (PEN) by first extracting the
negative peak value at the electrode location FCz between
50-250 ms for conditions D1 and D2, and we subsequently
computed the difference wave by subtracting the ERPs with
the onset of D1 from the ERPswith the onset of D2. Similarly,
the P3 amplitudes were analyzed by extracting the positive
peak value at FCz between 200 ms – 275 ms for conditions
D1 and D2 and then subtracting both conditions. Note that
when using the ERP amplitude as the measurement, the factor
selection distance was eliminated.

III. BEHAVIORAL RESULTS AND DISCUSSION
Figure 5 shows the average task completion time, i.e., from
cube 1 to cube 2 in seconds. A repeated measures ANCOVA
was conducted to compare the task completion times for the
three different hand styles in the two conditions, using the
continuous BIS scores as covariate. This included all the
interaction terms between the hand styles and the task com-
pletion times as the within-participants factors. Levene’s test
and normality checks were carried out, and the assumptions
were met. There were no significant differences of the within-
subject factor hand style (F(2, 60)=.337, p=.715) nor for
the covariates as a between-subject effect (F(1, 30)=3.865,
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FIGURE 6. Questionnaire results for realistic level of the hand styles.

p=.059). There was also no significant hand styles ∗ con-
dition interaction (F (2, 60) =.337, p =.641) or among the
hand styles ∗ condition ∗ BIS scores (F (2, 60) =.288,
p =.674). The results supported hypothesis 1 by demonstrat-
ing that different rendering styles did not lead to significantly
different behaviors during the task [30].

As shown in Figure 6, all participants considered the real-
istic hand style to be more realistic than the robotic hand and
the arrow hand. Surprisingly, the results showed that there
were no significant differences between the realistic and the
robot hand style in the ratings regarding the preference and
suitability for the object selection task.

The results showed that the participants did prefer the
realistic hand style over the cursor style. However, this was
not because of its realistic rendering style but rather because
of the more naturalistic mapping between the physical hand
and the virtual hand. This might also explain the absence
of a significant difference in the preference ratings between
H1 and H2. Interestingly, some users suggested that they
preferred H2 for the 3D object selection tasks because it
occluded the target less.

IV. ERP RESULTS
For the measurement of the PEN amplitude, a repeated
measures ANCOVA was conducted to compare the effect
of the hand styles on the two conditions while treating the
continuous BIS scores as covariates. There was a signifi-
cant difference in the within-subject factor of the hand style
(F(2, 54)=3.586, p=.035, partial η2=.117) but not for
the covariate as a between-subject effect (F(1, 27)=3.015,
p=.094, partial η2 = .100). Interestingly, there was a sig-
nificant interaction between hand styles and continuous BIS
scores (F (2, 54)=3.605, p=.034, partial η2=.118). This lead
us to further examine the continuous BIS scores as a between-
subject factor, which was performed by dividing all the par-
ticipants into two groups, namely, a high BIS group and a
low BIS group (low BIS Score<=14; high BIS Score>=15).
This resulted in 17 participants being labeled in the high BIS
group and 15 participants in the low BIS group [31] with
effect size (Cohen’s d=2.37 for H1, d=0.057 for H2 and
d=0.14 for H3). A mixed measures ANOVA was performed
to compare the effect of the hand styles on the amplitude
between the BIS groups. It was found that there was a

FIGURE 7. Average ERPs from all participants in response to hand style 1
(H1), hand style 2 (H2), and hand style 3 (H3) with the two conditions of
the normal (D1) and conflict radii (D2) over FCz based on the high and
low BIS score-based groups.

FIGURE 8. Average topoplots of the differences between the two
conditions (change - normal) for participants with high (upper row) and
low (lower row) BIS scores.

significant interaction effect between hand styles and BIS
groups (F (1, 30) =11.984, p =.002, partial η2=.285).
Figure 7 shows the ERP plots of the two groups based on

the BIS scores with the different hand styles grouped together,
with high- and low-sensitive participants. The Hand style
1 X high BIS interaction revealed a clear negative ERP com-
ponent, while the low BIS group participants showed only
a P300 component, which is commonly evoked by relevant
changes in visual stimuli [32].

We also calculated the topoplots (see Figure 8) for the
high BIS group (top row) and the low BIS Group (bottom
row). The high BIS group exhibited higher negativity in
response to condition H1 than to H2 and H3, whereas the low
BIS group exhibited strong positivity (P300) in response to
H1 compared to H2 and H3.

The correlation analyses between the BIS group and both
the PEN and the P300 amplitude revealed a significant neg-
ative correlation between the high BIS scores and the ampli-
tude of the negative ERP component in response to con-
flict during the realistic hand style condition (r=−0.9833;
p=0.000) (see Table 1). Low BIS scores were positively
correlated (r=0.8386; p=0.000) with a change in the ERP
negativity amplitude. Low BIS scores were further revealed
to have a significant positive correlation with the P300 ampli-
tudes in the realistic hand style (H1) condition. No significant
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TABLE 1. Correlation matrix for high and low BIS with PEN and
P300 amplitude for H1, H2, and H3. DARK-Highlighted cells represent
THAT A correlation is significant.

correlation coefficients were observed for any of the other
hand styles (all p’s >0.05).

V. DISCUSSION ON THE ERP RESULTS
As hypothesized in hypothesis 2, the results showed a
larger amplitude of the PEN / P300 components in response
to H1 than to H2 and H3. The results agree with the
mismatch theory [33], [34], which argues that the neg-
ative component amplitude correlates with the degree of
mismatch between the correct and erroneous responses.
More specifically, we believe that H1 gave participants a
higher level of body ownership and, thus, a stronger expec-
tation regarding when the virtual hand should reach cube 2.
Thus, false feedback evoked a larger negative amplitude.

This result echoes the uncanny valley theory [35], which
states that as a robot approaches, but fails to attain, a likable
human-like appearance, there will be a point where users
find even the slightest imperfection unpleasant. In our case,
as the virtual hand became more realistic, the participants
also became more aware of the errors. In a related vein,
the absence of the PEN component in the least realistic hand
style (H3) condition seemed to imply that participants felt
less body ownership and were, thus, more tolerant of or less
sensitive to incorrect feedback. This finding suggests that,
depending on the goals of the interaction and the hardware
capability, a higher rendering quality might not always be
the best. For example, if the tracking precision is likely to be
compromised or the display quality of an HMD is not ideal,
then using a less realistic rendering style might be helpful.
Only if the nature of the task and the available hardware
permits, the users’ favored human-like looking of their virtual
body should be realized.

The results also suggested that there is a correlation
between BIS scores and the amplitude of the PEN, but it
applies only to the H1 as the realistic hand. In contrast, for
the low BIS group, P300 might be a more effective ERP
feature. The correlations between BIS scores and the PEN
/ P300 amplitudes also concur with the results of previous
studies [25], [36] that functionally linked these components
with flexible behavioral adaptation.

The BIS scale has been used to measure punishment sensi-
tivity. The central implication of the BIS is that individuals
with higher punishment sensitivities are more sensitive to

negative outcomes or to errors in prediction than individuals
with lower punishment sensitivities.

In the context of the current experiment, it seemed that
participants with higher BIS scores were sensitive enough to
detect the error of cube 2 turning red before they touched
it, thus, generating a larger PEN and a negative correlation
between BIS scores and the PEN amplitude. On the other
hand, the participants with lower BIS scores were less sen-
sitive to the error and, thus, ignored or tolerated the selection
distance change and showed a small PEN amplitude.

The positive correlation between the low BIS group and
the PEN/P300 amplitude in response to H1 was surprising.
Due to the positive direction of the correlation, we suspected
P300 to be the main ERP component. A potential explanation
could be that the participants with lower BIS scores were
less sensitive to the error and, thus, tolerated the change
in the selection distance more, which resulted in a small
PEN amplitude. This also implied that more weighting is
put into the visual feedback system, which evokes the P300
component.

VI. FUTURE WORKS
We believe the experimental procedure proposed in this paper
can also be used to investigate other important questions:

A. EVALUATING THE IMPORTANCE OF DIFFERENT
FACTORS FOR 3D OBJECT SELECTION
Researchers have long been curious about the relationship
between levels of immersion and presence [37]. There have
been many inspiring works in recent years that aimed to
add different sensory feedback into VR and interaction
design [38]. For example, Impacto [39] rendered haptic feed-
back with both solenoid and electrical muscle stimulation,
Level-Ups [40] adds a self-contained vertical actuator to the
bottom of the foot, and HapticTurk [41] replaces the motion
platform with actual human motion. Most of these works
relied on questionnaires and interviews to evaluate the effect
of the feedback. However, most of them have a clear event,
e.g., the time when the haptic feedback or motion feedback is
applied, and the ERP associated with this cognitive conflict
will be a useful tool for providing continuous user feedback
to the system [9].

B. MANIPULATING SENSE
The proposed experimental methodology can also be used
to evaluate the effectiveness and the range of recent works
that manipulated the senses to overcome the constraints of
physics, such as a limited number of props [42], limited
space [43], and cybersickness [44]. Again, in these cases,
by controlling the source of the conflicts, e.g., visual warping,
we can estimate a reasonable range for subtle sense manipu-
lation without being noticed or causing discomfort.

VII. LIMITATION
Our current setup used the Scan SynAmps2 Express system,
and the recorded EEGs were analyzed off-line. Due to its
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long setup time, this device is only suitable for an initial
investigation in a lab environment. We believe it should be
possible to reproduce the results using off-the-shelf, portable
EEG devices, and to process the data in real time [45]–[47].

During the experiment, we manually adjusted the belt of
the HMD to avoid contact with the sensors on the EEG cap.
This might not be possible if caps with higher sensor densities
are used. We believe the integration of the EEG cap with
the HMD is a natural one, and we expect to see commercial
products from companies such as MindMaze to be available
on the market soon.

Synchronization is also a challenging issue for hardware
integration, especially if specific components, such as the
N200 or P300, are being targeted. Leap Motion introduces
a 30 ms delay [23], and both Vive and Leap Motion have
a potential tracking precision error. Additionally, the event
generated from Unity 3D is limited by the rendering frame
rate (60 FPS). There is also another system delay for the
communication between Unity and the parallel port of Scan
(our EEG system). We estimated the latency to summate to
approximately 100 to 150 ms, which might cause some delay
in the ERP (Figure 7). For future works that focus on spe-
cific ERPs, such as N200 or P300, dedicated synchronization
hardware should be used.

The participants who took part in the experiment were 20-
26 years old and did not represent the whole population. For
future work, a broader age population will be recruited for
such experiments to make sure that age does not influence
conflict perception in virtual reality.

Finally, for well-defined tasks, such as the 3D object selec-
tion in VR, cognitive conflict is most undesirable and might
harm an individual’s sense of presence. However, for tasks
that are more complex or interactive, the cognitive conflict
might not always diminish the sense of presence. For exam-
ple, the cognitive conflict has long been used as a strategy
for encouraging students to examine their previous knowl-
edge and to aim for conceptual change [48]. We believe that
extending this framework to address such complex scenarios
is an exciting future research direction.

VIII. CONCLUSION
We investigated how different visual styles affect the behav-
ioral and cognitive processes of users in VR. An EEG-based
experiment was conducted to evaluate how the rendering style
of the users’ avatar hand affected user behavior and elec-
trophysiological responses towards a prediction error during
object selection with direct 3D input in VR. The results
suggested that the more realistic the virtual environment is,
the more sensitive the users become to subtle errors, such as
tracking inaccuracies, which concurs with the uncanny valley
theory.
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