
NeuroImage 226 (2021) 117578 

Contents lists available at ScienceDirect 

NeuroImage 

journal homepage: www.elsevier.com/locate/neuroimage 

The impact of hand movement velocity on cognitive conflict processing in 

a 3D object selection task in virtual reality 

Avinash K Singh 

a , ∗ , Klaus Gramann 

b , a , Hsiang-Ting Chen 

c , Chin-Teng Lin 

a 

a Australian Artificial Intelligence Institute, School of Computer Science, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo 

2007, NSW, Australia 
b Psychology and Ergonomics, Technische Universitaet Berlin, Germany 
c School of Computer Science, University of Adelaide, Australia 

a r t i c l e i n f o 

Keywords: 

Virtual reality 

EEG 

Cognitive conflict 

PEN 

Pe 

Velocity 

a b s t r a c t 

Detecting and correcting incorrect body movements is an essential part of everyday interaction with one’s environ- 

ment. The human brain provides a monitoring system that constantly controls and adjusts our actions according 

to our surroundings. However, when our brain’s predictions about a planned action do not match the sensory 

inputs resulting from that action, cognitive conflict occurs. Much is known about cognitive conflict in 1D/2D en- 

vironments; however, less is known about the role of movement characteristics associated with cognitive conflict 

in 3D environment. Hence, we devised an object selection task in a virtual reality (VR) environment to test how 

the velocity of hand movements impacts human brain responses. From a series of analyses of EEG recordings syn- 

chronized with motion capture, we found that the velocity of the participants’ hand movements modulated the 

brain’s response to proprioceptive feedback during the task and induced a prediction error negativity (PEN). Ad- 

ditionally, the PEN originates in the anterior cingulate cortex and is itself modulated by the ballistic phase of the 

hand’s movement. These findings suggest that velocity is an essential component of integrating hand movements 

with visual and proprioceptive information during interactions with real and virtual objects. 
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. Introduction 

Several mechanisms are involved when humans interact with their

nvironment, each making use of information from different sensing

odalities, such as visual cues and proprioception( Scheidt et al., 2005 ).

hese sensory modalities serve the brain’s monitoring system, which

nstructs, plans, and executes interactions ( Ozkan and Pezzetta, 2018 ).

mportantly, this monitoring is constant to ensure one’s perceptions of

heir surroundings are continually updated ( Singh et al., 2018 ) to match

eality ( Padrao et al., 2016 , 2015 ). Should a change occur ‘mid-strategy,’

.e., during the process of planning and executing an interaction, the

esult is a mismatch response known as cognitive conflict ( Fan et al.,

003 ). The human brain makes predictions about the outcome of an

nteraction, continuously comparing perceived information to that pre-

iction, and when the prediction fails to hold, conflict occurs. 

Cognitive conflict was first discussed in an article by Donchin and

oles (1988) and republished in Donchin and Coles (2010) . While there

as no specific mention of event-related potential (ERP) related to an

rror, the work of Donchin and colleagues described P300 amplitude

odulations due to changes in the environment. Later, Coull and No-

re (1998) showed that cognitive conflict causes one to redirect at-
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ention and reconfigure their initial plan, causing higher cognitive re-

ources than non-conflict. In subsequent years, a first systematic exper-

mental task was devised for cognitive conflict, known as the bimanual

hoice reaction task, which revealed that cognitive conflict causes a se-

uence of two types of ERP. First, the erroneous response causes an

rror-related negativity (ERN or Ne), which is a negative ERP typically

eaking at around 50–150 ms ( Falkenstein et al., 1991 ; Gehring et al.,

993 ). This is followed by error-related positivity (Pe) after the erro-

eous response begins, which typically peaks at around 200–400 ms.

ince this discovery, several experimental scenarios have been devel-

ped to test and demonstrate ERN and Pe. These scenarios include tasks

ike the Eriksen flanker task ( Eriksen and Eriksen, 1974 ; Kopp et al.,

996 ), the oddball task ( Halgren et al., 1998 ; Squires et al., 1975 ), and

he Stroop task ( Stroop, 1935 ; West and Alain, 1999 ). Some other vari-

nts of ERN include feedback-related negativity (FRN) ( Holroyd and

oles, 2002 ), and observational error, due to a person observing an-

ther person making an error ( van Schie et al., 2004 ). 

However, most of the experiments, protocols, and findings de-

cribed above only pertain to passive one-dimensional (1D) or two-

imensional (2D) stimuli and cannot necessarily be generalized to a

hree-dimensional (3D) world. A realistic 3D input, for example, grasp-

ng a bottle on a table in front of you, adds significant complexity to an
vember 2020 
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nteraction task given the computations need to move one’s body parts

hrough space. 

At the same time, realistic 3D interactions provide a window of op-

ortunity to understand better the brain’s monitoring function and how

t conducts complex monitoring of the real world ( Jungnickel and Gra-

ann, 2016 ). One of the most basic 3D interactions is an object selec-

ion task ( Argelaguet and Andujar, 2013 ). To grasp an object in the 3D

orld using the hand, the user is required to perform a set of complex

ovements that involve positioning their palm and fingers over the ob-

ect. Our previous work with a 3D object selection task demonstrated

hat changing the selection radius of a virtual cube (leading to prema-

ure feedback of touching the object) could lead to a mismatch between

he visual and the proprioceptive feedback, invoking cognitive conflict

 Gehrke et al., 2019 ; Singh et al., 2020 , 2018 ). We found the conflict

eflected a form of prediction error negativity (PEN) that seems to be-

ong to the same class of ERP as the ERN and FRN found in the studies

entioned above. Additionally, the results indicated that sensory in-

egration plays an essential role in monitoring and producing ongoing

ctions, particularly for 3D object selection. Our findings also suggest

hat visual feedback dominated proprioceptive feedback in participants

ho completed the task in a short amount of time. We thus concluded

hat proprioceptive feedback is more important for slower movements.

owever, limitations in the experimental protocol did not allow us to

nalyze hand movement velocity and its role in integrating visual and

roprioceptive information. 

To overcome the limitations of our previous studies and to further in-

estigate the role of movement velocity on the electrocortical responses

o cognitive conflict, we designed an experimental protocol that manip-

lated hand movement velocity. Our intuition was that the velocity at

hich a hand moves does impact cognitive conflict processing in 3D

bject selection tasks. To test this hypothesis, we devised a task to mea-

ure hand movement velocity in tandem with brain electrical responses

o cognitive conflict using two different sizes of the cube to invoke two

inds of hand movement velocity profiles. By manipulating the hand

ovement velocity, we manipulated the hand and arm movement of

articipants in different experimental conditions leading to differences

n proprioceptive feedback. The concurrent processing of propriocep-

ive feedback and its comparison with the predicted feedback when an

ction is executed, is one major sensory source for controlling the accu-

acy of the movement itself ( Desmurget and Grafton, 2000 ). Deviations

f the proprioceptive feedback from the predicted movement feedback

hould thus contribute to error detection and the associated brain dy-

amic markers like the PEN. 

. Materials and methods 

.1. Participants 

To determine the effect of movement velocity on the amplitude of

EN, we recorded electroencephalogram (EEG) data from 20 partici-

ants (2 females and 18 males) with all right-hand dominated except

ne participant. The mean age of the participants was 23.3 years, with

 range of 18–30 years. Before participating in the study, each partic-

pant was given a full explanation of the experimental procedure, and

ach provided informed consent. Ethics approval was issued by the Hu-

an Research Ethics Committee of the University of Technology Sydney,

ustralia. The experiment was conducted in a temperature-controlled

oom by a male experimenter. None of the participants had a history

f neurological or psychological disorders, which could have affected

he experiment results; participants were allowed to wear glasses for

orrected vision. 

The number of participants took part in this study have a large ef-

ect from the velocity of the hand’s movement on the amplitude of PEN

F (1, 17) = 89.454, p < .001, 𝜂2 = 0.99) based on the calculation of

reen et al. (1997) . 
.2. VR setup 

The virtual reality (VR) environment was provided through an HTC

ive head-mounted OLED display with a resolution of 2160 × 1200 and

 refresh rate of 90 Hz (HTC Corp., Taiwan). The participants’ head

ositions were tracked with the embedded inertial measurement units

IMUs), while an external Lighthouse tracking system cleared the com-

on tracking drift with a 60 Hz update rate. 

Hand motions were recorded with a Leap Motion controller (Leap

otion Inc., USA) attached to the front of the HTC Vive that tracked

he fingers, palms, and arms of both hands up to approximately 60 cm

bove the device with 120 frames/second. The tracking accuracy has

een reported to be 0.2 mm ( Weichert et al., 2013 ), and the latency has

een reported to be approximately 30 ms ( Bedikian, 2013 ). 

.3. EEG setup 

The EEG data were recorded from passive 64 Ag/AgCl electrodes,

hich were referenced to an electrode placed between locations Cz

nd CPz. The placement of the EEG electrodes was consistent with the

xtended 10% system ( Chatrian et al., 1985 ). Contact impedance was

aintained below 5k Ω. The EEG recordings were collected using a Curry

 SynAmps2 Express system (Compumedics Ltd., VIC, Australia) with a

igital sample rate of 1 kHz in 16-bit resolution. 

First, the participants were equipped with an EEG cap and an addi-

ional separator cap (a plastic shower cap) to reduce electrolytes pollut-

ng the VR equipment. The head-mounted display was placed on top of

he separator cap (see Fig. 1 ). To ensure the participants had a better

R experience, we installed a table similar to the one used in the VR en-

ironment. The height of the table in both worlds was similar in color,

nd height, so participants were not able to distinguish between the real

nd the virtual environment. 

.4. The experiment scenario 

Each participant performed the 3D object selection task with their

ominant hand tracked. Fig. 2 displays a scenario for a single trial. Each

rial was four seconds long. The scenario started with instructions about

he task, followed by the experimental trials. In each trial, a cube ap-

eared on the table, which the participants were instructed to reach out

o and touch. The cube turned red when touched as a feedback signal.

articipants were expected to finish the task within 4 s; otherwise, the

rial was marked as incomplete. 

The experiment was designed with two degrees of difficulty – a small

ube ( d ) and a big cube ( D ) – which each produce a distinct velocity pro-

le based on Fitts’s law ( Soukoreff and MacKenzie, 2004 ). Selecting a

mall cube was more difficult than selecting a big cube as the endpoint

f the movement required more finely-grained motor adjustments re-

ulting in a lower velocity. 

The cognitive conflict condition was invoked by manipulating the

election radius on the cube. The selection radius is the radius of an

nvisible sphere surrounded the cube that is used in the virtual real-

ty environment to measure the interaction of other objects or agents

n the VR with this object. Once the system detects the virtual hand

s in contact with the invisible sphere (to select the object), the cube

hanged its color from white to red. There were two kinds of selection

adii for the non-conflict and the conflict conditions. The selection ra-

ius of the invisible sphere equaled the size of the cube, i.e., ‘d’ for the

on-conflict condition. In this case, the color change indicating that the

bjects were touched appeared at the moment when the hand of the

articipants touched the virtual object. In the conflict condition, in con-

rast, the selection radius was 1.5x larger than the radius ‘d’, leading to

 color change of the object before the hand reached the actual object.

he participant naturally expected the cube to change its color when the

irtual hand reached it, i.e., at a distance ‘d. In the conflict condition,
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Fig. 1. A participant performs the 3D object selection task 

with an HTC Vive head-mounted display and a Leap Mo- 

tion controller while wearing the 64-electrode EEG cap. 

Fig. 2. Experiment scenario for a single trial. 
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he cube changes its color prematurely when the hand reached the cube,

.e., at distance D = 1.5d See Fig. 3 (A). 

The selection radius of the cubes, defining the collision between the

ndpoint of the moving hand to the cube, changed in 25% of the trials,

uch that 75% of the trials used distance D1/d1 and the remaining trials

sed distance D2/d2 for big/small cubes (D1 = 1.5 ∗ d1 and D2 = 1.5 ∗ d2;

ee Fig. 3 (B)). The cube was also placed in three positions: in the center

0°), at 30° to the left, or at the same radius at 30° to the right. This cre-

ted variety in the velocity profiles and kept the participants engaged. 

The experiment used a 2 by 2 design with two independent variables:

) the conditions – no-conflict and conflict; and b) the size of cubes –

mall and big. The experiment was conducted over two blocks, with each

lock comprising 250 trials with an overall duration of about ~16 min.

he full experiment for each participant took about 1.5 h, including the

nitial setup of the EEG cap and head-mounted display, the trials, and

ompleting the questionnaire. 

.5. Questionnaire 

While there is no standard method for measuring the presence in

mmersive virtual environments, most researchers use questionnaires

o assess self-reports from users. In the current experiment, a modified

ersion of Igroup presence questionnaire, i.e., IPQ ( Schubert, 2003 ), to-

ether with the participant’s experience of game playing, was used to

easure the presence of participants. The questionnaire comprised a to-

al of 24 questions to be answered on a seven-point Likert scale. At the

nd of the experiment, each participant completed a 24-item IPQ asking
hem to rate different parameters of the experiment on a 7-point Likert

cale, such as realism, experience, and controlling events, to yield a pos-

ible result of between 7 and 98. Additionally, the IPQ included a space

sking them to state their previous experiences with game playing to

elp assess their overall proficiency with VR scenarios. 

. Data analysis 

.1. EEG data analysis 

We used the EEGLAB toolbox ( Delorme and Makeig, 2004 ) in MAT-

AB 2016 (MathWorks Inc, USA) to process the EEG data. The raw EEG

ignals were filtered using a 0.1-Hz high-pass and 40-Hz low-pass FIR

lter with a filter order of 15 with zero-phase and subsequently down-

ampled to 250 Hz. The resulting data were inspected to identify and

emove noisy electrodes using the Kurtosis method, followed by an ICA

 Makeig et al., 1996 ) and equivalent dipole model fitting using DIP-

IT with a spherical four-shell (BESA) head model ( Scherg, 1990 ). The

esultant ICs were further processed to detect artifact-related ICs us-

ng the SASICA plugin ( Chaumon et al., 2015 ), which uses autocorre-

ation, focal ICs, eye blinks, and information from the ADJUST plugin

 Mognon et al., 2011 ) to identify ICs representing artifacts. These ICs

ere marked and excluded from the final data. On average, 19.80 ± 8.82

Cs were removed, and the data was back-projected to the sensor level.

he back-projected data were epoched from 500 ms prior to touching

he cube to 1000 ms after the touch event for all conditions, as well as

eing inspected again for artifacts using the Kurtosis method. On aver-
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Fig. 3. A. a cube representation from Unity 2 software surrounded by a sphere (invisible) of green (d) or red radius (D) at a time based on condition, B. a schematic 

representation of the 3D object selection task performed by a participant with small (left) and big cubes (right) with non-conflict (d1 and d2) and conflict (D1 and 

D2) selection radius. The selection radius is not visible to the participant. 
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ge, 19.84 ± 10.04% epochs were removed. Please see Supplementary

ig. 1 for example of exemplary detected ICs. 

The IC components of all the participants were clustered using a

eural network-based clustering approach, implemented in EEGLab,

ased on their similarity with respect to the ERP, power spectrum, and

vent-related spectral perturbations (ERSP), plus the component scalp

aps, their equivalent dipole, and corresponding dipole locations for

ach participant. The approach was able to cluster the IC components

hared by approximately 70% of the participants. Our more in-depth

nalysis focuses on clusters with IC components located in or near the

ingulate cortex ( Montgomery et al., 2005 ) to find cognitive conflict

 Schlüter et al., 2018 ) related IC. The clustered components were fur-

her used to compute ERSP and to extract the PEN and Pe from the back-

rojected and channel-based ERPs. PEN was calculated as the minimum

mplitude in a search window of 50–150 ms after the touch event calcu-

ated as the mean of the minimum ± 2 adjacent sample points. Similarly,

e was calculated as the mean of the maximum in a 250–350 ms search

indow after the touch event, including ± 2 adjacent sample points. 

.2. Behavioural data analysis 

.2.1. Task completion time 

Task completion time was calculated as the difference between the

imes the cube appeared until the cube changed color. 
.2.2. Hand motion trajectory data 

Velocity, hand position (palm, finger, etc.), the number of frames

n each VR scene, and the time required for each frame were recorded

or each trial for each participant. The primary focus of this experiment

as to understand how the velocity profile of the reaching movement af-

ected the PEN. Therefore, the velocity and acceleration were calculated

or each trial at each sample point during the hand movement. 

Extraction of a ballistic and corrective phase of velocity 

The hand movement velocity was divided into two parts based on

he maximum peak of the velocity of each trial. The velocity before

he peak is known as the ballistic phase of the hand-movement velocity.

he velocity after the peak is known as the corrective phase of the hand-

ovement ( Meyer et al., 1988 ). Following Meyer et al. (1988 ) theory,

e have designated the initial movement phase before the peak veloc-

ty as the ballistic phase and the remaining movement as the corrective

hase. To further concentrate on the most representative ballistic and

orrective phase, we further selected the first 20% of the segmented

allistic data for further analysis, and similarly, the last 20% of the cor-

ective phase of velocity data as the absolute corrective phase of hand

ovement for further analysis. 

.2.3. Statistical analysis 

All the statistical analyses of behavioral and EEG data were con-

ucted using SPSS (IBM SPSS Inc Version 24) and Matlab 2016 (Math-

orks Inc, USA). 
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Fig. 4. The task completion time for all conditions based 

on different selection radius for small and big cubes. NS) 

non-conflict trials with small cubes; NB) non-conflict trials 

with big cubes; CS) conflict trials with small cubes; CB) 

conflict trials with big cubes. 
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ANOVA. A 2 × 2 repeated analysis of variance (ANOVA) was con-

ucted using SPSS for task completion time with the factors a cube sizes

small vs. big cube) and conflict conditions (non-conflict vs. conflict)

ith a significance level of alpha = 0.05 followed by post-hoc analysis

sing the Tukey method to determine the source of significant difference

ith 0.05 significance level if any. 

T-test. One-sample t-tests were conducted using SPSS on difference

EN and Pe amplitudes between small and big cubes with a test-value

f 0 for all 64 electrodes. To minimize the Type-1 error, 1000-fold per-

utation testing was applied. If the returned p-value was below 0.05

or a channel, it was marked as statistically significant. 

Statistics for ERSP. Similar to ERP, difference ERSP between condi-

ion and cube size were investigated to find the time windows and fre-

uency, revealing significant differences between small and big cubes

or a trial. To define statistical significance between the unpaired val-

es, the EEGLab function statcond() was used. Due to this, a 1000-fold

ermutation testing was applied. If the returned p-value was below 0.05,

he sample was marked as statistically significant and plotted on a 2-d

rid of frequency and time for each point. 

ANCOVA. We have also conducted a 2 × 2 repeated measure analysis

f covariance (ANCOVA) using SPSS with the factors a cube sizes (small

s. big cube) and conflict conditions (non-conflict vs. conflict) on PEN

nd Pe amplitude with task completion time as co-variate. 

.2.4. Regression analysis 

The multiple linear regression was also conducted using SPSS (IBM

PSS Inc Version 24) for PEN and Pe w.r.t. the conflict/no-conflict con-

ition. The entered variables were in the following order: the velocity

f the hand’s movement during the ballistic phase, the VR quality score

QVR), the VR quality self-evaluation score (SVR), realism, the possibil-

ty of action in VR (PAVR) score, and the task completion time. We also

erformed another regression analysis swapping the order of the ballis-

ics velocity with the task completion time. The results of the second

egression analysis have been reported in the supplementary. 

.2.5. Correlation analysis 

We tested the relationship between the ERSP for the delta, theta,

lpha, and beta power bands and the ballistic phase of the hand move-

ent velocity with a Pearson’s correlation analysis using Matlab 2016

Mathwork Inc, USA). 
. Results 

.1. Behavioral results 

Fig. 4 shows the box plot for the average task completion time for all

rials for all participants. A repeated-measures ANOVA was conducted

o compare the task completion times for 2 (cube sizes) x 2 (condi-

ions). There was a significant difference for both the conditions (F (1,

8) = 191.074, p < .001) and the cube sizes (F (1, 18) = 302.815, p

 .001). The two main effects were qualified by their interaction cube

izes ∗ conditions (F (1, 18) = 5.358, p = .032). Tukey post-hoc tests

evealed no significant difference in task completion time ( p = .178) in

he non-conflict trials with the small and big cubes. There was also no

ignificant difference ( p = .085) in task completion time for the conflict

nd non-conflict trials. However, there was a significant difference ( p <

001) between the task completion time for the small and big cubes. 

We also plotted the overall hand movement velocity pattern for all

rials to see how it changed over time. Fig. 5 (NS & NB) shows the hand’s

rajectory initially increased sharply for about 20–25 frames, which is

nown as the ballistic phase, then slowly decreased until a cube was

elected. According to the optimized initial pulse (OIP) model, this de-

rease is known as the corrective phase ( Meyer et al., 1988 ). The trajec-

ories for the small and big cubes in the non-conflict trials were quite

imilar. However, as can be seen from Fig. 5 (CS & CB), with the small

ubes, the participant steadily increased velocity until the ballistic phase

hen decreased pace during the corrective phase until the cube was se-

ected. By contrast, with the big cubes, there was still a sharp increase

n the ballistic phase, but the decrease in the corrective phase was very

teady compared to the small cubes. This is likely because, with a big

arget, the participants were less precise with their hand movements in

he ballistic phase, resulting in more corrective movements needed in

he corrective phase, as opposed to the more careful approach from the

utset with the smaller cubes. 

.2. EEG results 

Figs. 6 and 7 show the topographical plots of the PEN and Pe, respec-

ively. An independent samples t -test of the PEN component for both

onditions indicate a significant difference in PEN at FCz in both the

on-conflict and conflict trials for the small cubes (t (17) = − 3.612,

 = .002, p = .009) and FC2 in the big cubes (t (17) = − 2.575, p = .020,

 = .022). Similarly, there was a significant difference in Pe at chan-

el FC6 in both the non-conflict and conflict trials with both the small

ubes (t (17) = 2.178, p = .044, p = .077) and FCz for the big cubes (t

17) = − 3.402, p = .003, p = .009). 
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Fig. 5. Hand movement velocities for all 

conditions for one exemplary participant. 

NS) non-conflict trials with small cubes; NB) 

non-conflict trials with big cubes; CS) con- 

flict trials with small cubes; CB) conflict trials 

with big cubes. 
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As indicated from the topographical plots, the average ERP for all

articipants was evaluated for the fronto-central region at FCz. Fig. 8

hows the difference ERP showing larger PEN for big cubes and larger

e for small cubes. 

By inspecting the properties of the different clustered ICs in the

ronto-central region, we were able to extract the IC cluster with MNI

oordinates of x = − 6, y = 10, and z = 24. According to the Talairach

lient application, 1 MNI coordinates are identified as the anterior cin-

ulate cortex (ACC) as shown in Fig. 9 . This component is shared by

ore than 70% of the participants. 

We also found other clusters related to PEN. However, the results

howed no difference between small and big cubes for PEN and Pe. See

eft and right-sensorimotor cortex based ICs and their ERP in Supple-

entary Fig. 2. 

To understand the effect of 3D object selection over time, we calcu-

ated the ERSP for the selected ACC component. As shown in Fig. 10 , in

he conflict trials with the small cubes, there was substantial suppres-

ion in alpha band power between 50 and 150 ms and in both the theta

nd alpha band at 400–700 ms, which did not occur in the non-conflict

rials. By contrast, in the conflict trials with the big cubes, there was

uppression in beta band power at around 0–100 ms and 300–600 ms. 

.3. Analysis of covariates 

This analysis was to determine whether task completion time af-

ected the PEN and Pe amplitudes for sizes x conditions design. Based

n an ANCOVA with task completion time as the covariate, we found

hat task completion times do not affect the PENs. Therefore, there was

 still a significant difference for both the conditions (F (1, 67) = 15.763,

 < .001) and the cube sizes (F (1, 67) = 5.371, p < .001). Interestingly,

here were no effect found by their interaction cube sizes ∗ conditions

F (1, 67) = 0.472, p = .494). 

However, task completion seems to have effect on Pe. There was

o significant difference for both the conditions (F (1, 67) = 0.280, p

 .599) and the cube sizes (F (1, 67) = 0.208, p < .650). Also, there

ere no effect found by their interaction cube sizes ∗ conditions (F (1,

7) = 1.415, p = .238) either. 
1 http://www.talairach.org/ 

𝑃

.4. Regression analysis 

To understand the relationships between the subjective and behav-

oral data of the PEN and Pe amplitudes, we performed a regression

nalysis with the following results. 

A linear regression established that the ballistic of hand movement

elocity, together with the behavioral measures quality of virtual reality

QVR) and self-evaluation of virtual reality (SEVR), can predict PEN in

onflict trials with small cubes (F (3, 17) = 4.455, p = .021). If added

ealism; the possibility to act in virtual reality (PAVR), task comple-

ion time, the ballistic of hand movement velocity, QVR and SEVR can

lso predict PEN in conflict trials with small cubes (F (6, 17) = 3.248,

 = .043). However, we observed no such covariation for Pe in conflict

rials with small cubes (F (6, 17) = 0.937, p = .507). The ballistic of

and movement velocity, together with QVR and SEVR, accounted for

8.8% of the variance in PEN amplitude. Including realism, PAVR, and

ask completion time raised that level to 63.9% of the variance. The re-

ression equation to predict the PEN with small cubes was as follows:

 𝐸 𝑁 𝑠𝑚𝑎𝑙𝑙 𝑐𝑢𝑏𝑒 = −3 . 481 − 6 . 195 ∗ 𝐵𝑉 + 0 . 147 ∗ 𝑄𝑉 𝑅 + 0 . 151 ∗ 𝑆𝐸𝑉 𝑅 

(1) 

here BV = ballistic of hand movement velocity, QVR = quality of vir-

ual reality scene, SEVR = self-evaluation of virtual reality scene. 

Similarly, a linear regression established that the ballistic of hand

ovement velocity, together with the behavioral metrics taken from

he IPQ, could predict the PEN amplitudes in the conflict trials with the

ig cubes at a statistically significant level (F (3, 17) = 3.880, p = .033).

gain, when including realism, PAVR, task completion time, and the

allistic phase, QVR and SEVR could also generate an accurate predic-

ion (F (6, 17) = 1.903, p = .043). 

Notably, the ballistic of hand movement velocity alone was able to

redict Pe amplitudes in conflict trials with big cubes at significant levels

F (1, 17) = 6.318, p = .023). The ballistic phase, together with the IPQ

etrics, accounted for 45.4% variability in the PEN amplitude but only

8.3% for the Pe amplitude. The regression equation to predict the PEN

ith big cubes was as follows: 

 𝐸 𝑁 𝑏𝑖𝑔 𝑐𝑢𝑏𝑒 = −5 . 706 − 8 . 286 ∗ 𝐵𝑉 − 0 . 132 ∗ 𝑄𝑉 𝑅 + 0 . 307 ∗ 𝑆𝐸𝑉 𝑅 

(2) 

http://www.talairach.org/
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Fig. 6. Topographical plots of PEN. NS) 

non-conflict trials with small cubes; NB) 

non-conflict trials with big cubes; CS) con- 

flict trials with small cubes; CB) conflict tri- 

als with big cubes. 
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here BV = ballistic of hand movement velocity, QVR = quality of vir-

ual reality scene, SEVR = virtual reality scene self-evaluation 

The regression equation to predict Pe with big cubes was as follows:

 𝑒 𝑏𝑖𝑔 𝑐𝑢𝑏𝑒 = −0 . 966 + 8 . 112 ∗ 𝐵𝑉 (3)

here BV = ballistic of hand movement velocity 

.5. Correlation between velocity and spectral power 

The Pearson’s correlation between the spectral powers (delta, theta,

lpha, and beta) and the ballistic phase in the no-conflict trials with

mall cubes suggests that the ballistic phase was significantly correlated

ith the alpha band ( r = − 0.200, n = 185, p = .006) and the beta band

 r = − 0.181, n = 185, p = .014). However, we found no significant corre-

ation for the conflict trials with small cubes. Yet with big cubes and the

onflict trials, we found a statistically significantly correlation between

he ballistic phase and the delta band ( r = − 0.254, n = 61, p = .048)

lus the theta band ( r = − 0.323, n = 61, p = .011). No correlation was

ound in the non-conflict trials with big cubes. 

. Discussion 

We hypothesized that the velocity of the hand’s movement impacts

ognitive conflict processing in 3D object selection and, more specifi-

ally, the amplitudes of the PEN and Pe components. To test this hy-

othesis, we designed a modified version of the 3D object selection task

utlined in Singh et al. (2018) to produce two distinct hand movement

elocity profiles based on different cube sizes and different selection

adius to create cognitive conflict. 
.1. Hand movement velocity and its effect on PEN and Pe 

The experiment successfully generated two distinct hand movement

elocity profiles for the big and small cubes as expected. It was also

ound that the hand-movement trajectory followed a specific pattern

hile touching the cube. The participants tended to initially acceler-

te their hand until they reached the peak velocity, followed by a de-

eleration before touching the cube. This specific pattern concurs with

eyer et al. (1988) OIP model. The OIP model suggests that when in-

eracting with a 3D object, the hand movement trajectory consists of a

allistic phase followed by a corrective phase divided by the peak ve-

ocity. 

Interestingly, the conflict trials for the big cubes only seemed to have

 ballistic phase without any corrective phase after the peak of the move-

ent velocity. The absence of a corrective phase can be explained by

he selection radius of the big cubes that generated premature touch

eedback, creating cognitive conflict. An already big cube with an addi-

ional large selection radius does not leave enough space for extended

and movements. As such, the feedback was given already during or at

he end of the ballistic phase of the movement, and no corrective phase

f hand movements was initiated. That could also be the explanation of

hy there was higher theta power for trials with big cubes compared to

mall cubes in conflict trials. According to Kalfao ğlu et al. (2018) , un-

orrected errors result in stronger modulations of theta power compared

o corrected errors. Therefore, our findings of higher theta power cou-

led with the absence of a corrective movement phase, i.e., uncorrected

rrors, support their argument. 

The results from the conflict trials with big cubes showed a signif-

cant difference in higher theta and alpha powers just after the color
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Fig. 7. Topographical plots of Pe. NS) non-conflict trials with small cubes; NB) non-conflict trials with big cubes; CS) conflict trials with small cubes; CB) conflict 

trials with big cubes. 

Fig. 8. The difference in ERP between the no-conflict and conflict trials with the 

small and big cubes. NS) non-conflict trials with small cubes; NB) non-conflict 

trials with big cubes; CS) conflict trials with small cubes; CB) conflict trials with 

big cubes. 
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o  
hange feedback, unlike the small cubes. The difference appeared within

0 ms after the onset of feedback, which meant the participants did not

ave a chance to correct their movements. However, the participants

ere more careful with the small cubes from the outset, requiring fewer
djustments in the corrective stage. This again serves as proof that the

IP model holds in the 3D object selection tasks ( Argelaguet and Andu-

ar, 2013 ; Meyer et al., 1988 ). 

The hand movement trajectories profiles also affected the PEN and

e amplitudes. The PEN amplitude in the big cubes was significantly

igher than that of the small cubes in conflict condition. We believe it

as because, in the big cube for conflict conditions, PENs were evoked

uring the ballistic phase. The OIP model suggests that the participant

ould expect less correction and adjustment for an easy target, i.e., big

ube, during the ballistic phase. When the cognitive conflict arises, i.e.,

he big cube changed its color prematurely during the ballistic phase,

he participants would need to allocate more cognitive resources than

xpected to respond to the prediction error and thus larger correspond-

ng PENs. For small cubes in conflict conditions, PENs were evoked dur-

ng the corrective phase. In the corrective phase, the participants were

lready engaged in the process of correction and adjustment. The pre-

iction error would require less additional cognitive resources and, thus,

 smaller PEN amplitude. In contrast, there were no significant differ-

nces in Pe between big and small cubes for conflict conditions. This

ay be because the Pe amplitude was modulated by the visual stim-

li, i.e., change of cube color, which was identical in both conditions

 Polich, 2007 ). 

.2. Origin of cognitive conflict, event-related spectral perturbation, and its 

orrelation with the hand’s velocity 

Several past studies have demonstrated that the cognitive conflict

riginates in ACC and is also a contributor to the family of event-
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Fig. 9. The identified anterior cingulate cortex and its dipole clus- 

ters from all participants (MNI coordinates x = − 6, y = 10, and 

z = 24). 
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elated errors that includes PEN ( Carter et al., 1998 ; Devinsky et al.,

995 ; van Veen et al., 2001 ). Our tests that localize EEG data with ICA

 Makeig et al., 1996 ) and dipole fit ( Scherg, 1990 ) concur with those

ndings. ACC was found to be activated in most participants as they per-

ormed the 3D object selection task (see Fig. 10 ). This strengthens proof

hat ACC is indeed involved in the cognitive process. ACC is the vital hub

ehind our ability to handle situations of cognitive conflict ( Carter et al.,

998 ; Umemoto et al., 2018 ). ACC is also known to interact with mo-

or controls in a bottom-up fashion ( Rauss and Pourtois, 2013 ). That

ognitive conflict originates in ACC is also aligned with other related

asks, such as action monitoring ( Botvinick et al., 2001 ), observational

rrors ( van Schie et al., 2004 ), and prediction errors ( Gehrke et al., 2019 ;

zkan and Pezzetta, 2018 ; Singh et al., 2020 , 2018 ). 

To further verify the origin of cognitive conflict, we looked at ERSP

n ACC. The results show that frontal theta and alpha power are modu-

ated by cognitive conflict responses in the participants. Modulations

n theta power accord with existing theories of frontal theta power

ariations during tasks that involve cognitive conflict ( Arrighi et al.,

016 ; Zhang et al., 2018 ). However, we founded one difference. Our

esults showed that theta power decreases in situations of cognitive

onflict while other results show an increase – assumed to be the re-

ult of phase resetting over a sudden change in behavior, like cogni-

ive conflict, which generates an error-related negativity ( Luu et al.,

004 ; Sauseng et al., 2010 ). We find evidence to dispute this claim in

hat phase resetting does not always generate ERN ( Yeung et al., 2007 ).

ence, our result supports the Yeung et al. (2007) theory. It seems that

he PEN evoked in our experiments was not the result of phase reset-

ing in theta given conflict conditions. Markedly, such arguments further

aise a question about why theta power phase resetting did not occur.

his requires further experimentation and investigation. 

In addition to the theta power modulations discussed in the previ-

us section, modulations in alpha power are also known to be related to

rrors ( van Driel et al., 2012 ). Several previous works suggest that the

lpha power modulation could be the results of attention and perception

 Den Ouden et al., 2012 ), self-awareness ( Devinsky et al., 1995 ), and the

bserver’s relationship with the person performing the task ( Kang et al.,

010 ). We found significantly more alpha power modulation in the con-

ict trials with the small cubes than the big cubes. This is potentially

ue to the higher attention requirements from the very beginning of
 m
and movement, which is also in line with attentional process theory

furtscheller (2003) . Interestingly, the small cubes in the no-conflict

rials also showed a significant correlation between the ballistic phase

nd alpha and beta power. Alpha and beta power are often associated

ith focused attention and motor inhibition ( Foxe and Snyder, 2011 ;

orimoto et al., 2002 ; Neuper and Pfurtscheller, 2001 ), which were both

equired for our 3D object selection task. Nevertheless, there is still the

uestion of why the same is not true for the conflict trials. The reason

ould be the dominance of theta power where cognitive conflict exists,

hich might dissipate the effects of other power bands. 

We also found a correlation between delta power and the ballistic

hase in the conflict trials with big cubes. The delta power band plays

n essential role in the inhibition process, such as cognitive conflict

 Harmony, 2013 ). Due to the lack of a corrective phase, the partici-

ants may have needed to inhibit their actions over quite a short pe-

iod, which would explain such a correlation. In addition to the above,

elta band modulation also found in other reaching out and imagined

and-movement tasks ( Korik et al., 2018 ; Zeng et al., 2019 ). 

.3. Modeling the relationship between PEN, Pe and hand movement 

elocity, task completion time, and IPQ scores 

It is evident so far that the ballistics and corrective phase of hand

ovements have an impact on PEN and Pe amplitude in conflict trials.

t was found that the ballistic phase for small cube modulated the PEN

ut slightly the Pe components of the ERP. Further, the ballistic of hand

ovement velocity with the behavior information from the IPQ (QVR

nd SEVR) was able to account for more than 48% of the variability in

EN for both small and big cubes. However, Pe is only a predictor with

ig cubes and even then, only accounts for 28% of the variability. We at-

ribute this weak correlation to the hand movement trajectory. As men-

ioned before, the hand movements with big cubes had a ballistic phase

f hand movement only, which was predominantly guided by combined

roprioceptive and visual sensory information as feedback. Therefore,

allistic of hand movement velocity alone was able to predict the PEN’s

mplitude. Although, including the realism and PAVR IPQ scores, along

ith the task completion time, increased the ability to predict PEN by

ore than 14%. 
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Fig. 10. Event-related spectral perturbations and statistical results (brown color to represent significance at 0.05, otherwise green) for the big/small cube and 

conflict/no-conflict conditions. 



A.K. Singh, K. Gramann, H.-T. Chen et al. NeuroImage 226 (2021) 117578 

 

e  

f  

a  

D  

s  

t  

i  

w  

p  

t  

e  

i  

t  

a

 

j  

m  

r  

h  

v  

i  

n  

a  

g  

M  

o  

t  

e  

w

6

 

o  

t  

t  

t  

s  

c  

t  

p  

p  

a

C

 

s  

K  

e  

S

A

 

c  

s  

H  

u  

s  

N  

w  

p

S

 

t

R

A  

A  

 

A  

 

 

 

B  

 

B  

 

 

B  

B  

C  

 

C  

 

C  

 

C  

 

C  

 

D  

 

D  

D  

 

D  

D  

D  

E  

 

F  

 

F  

F  

 

G  

 

G  

 

 

 

G  

 

G  

G  

H  

 

Interestingly, the IPQ score seems to play an essential role in mod-

ling PEN and Pe. In past studies, the participants’ experience was

ound to be highly related to their interactions with the environment

nd how the environment affects behavior ( Balconi and Crivelli, 2010 ;

evinsky et al., 1995 ). A previous experiment by Singh et al. (2018) also

hows that visual appearance affects cognitive conflict and is related

o both the level of realism ( Argelaguet et al., 2016 ) and the behav-

or inhibition score ( Carver and White, 1994 ). Our findings are in-line

ith these studies and explain why the IPQ scores from the participants

layed such an influential role in predicting PEN and Pe with the ballis-

ic phase and task completion time. The participant’s interactive experi-

nce with VR, such as their control over the scene, its realism, etc. made

t easier to translate their feelings toward the cognitive conflict. The par-

icipants with higher experience with VR also demonstrated higher PEN

mplitudes in the cognitive conflict conditions. 

Overall, the results indicate that hand movement velocity in an ob-

ect selection task plays an essential role in handling cognitive conflicts,

ost likely because movement-related proprioception is critical for cor-

ective hand movements ( Bagesteiro et al., 2005 ). The results from be-

avior, EEG, regression, and correlation support the conclusion that the

elocity of the hand’s movement impacts cognitive conflict processing

n 3D object selection tasks. Such a finding is only possible due to the

ature of the task. This task is one of the first of its kind to involve

ctive motor control in the field of neuroscience, falling into the cate-

ory of mobile-brain/body imaging (MoBI) ( Gramann et al., 2011 , 2014 ;

akeig et al., 2009 ). This finding has implications for our understanding

f how proprioceptive and visual sensory information are integrated and

ogether work toward cognitive control. These findings would be ben-

ficial for enhancing user experiences in real and virtual environments

ith an adaptive system for therapeutic and entertainment purposes. 

. Conclusion 

In this study, we investigated the impact of hand movement velocity

n cognitive conflict processing. We designed an experimental scenario

o invoke different velocity profiles during 3D object selection. The par-

icipants were asked to grasp virtual cubes in a series of 2 × 2 factor

rials: the first condition being the size of the cube – big or small; the

econd being the selection radius of the cube to induce a conflict/non-

onflict situation. The results of regression analysis with PEN, Pe, and

he participants’ IPQ scores show that PEN is modulated in the ballistic

hase and highly related to proprioceptive information. Additionally,

revious experience with VR technology, as self-reported in the IPQ,

lso significantly impacts cognitive processing. 
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