
 - 1 -

Pick-and-Play:
A Cross-Device Asynchronous Input Framework

 Paper id: 535

ABSTRACT

This paper proposes Pick-and-Play, a framework that helps

users accomplish tasks by asynchronously migrating user

input actions across devices. Unlike previous works that

synchronize the application states or file contents between

devices, Pick-and-Play is an asynchronous action-based

framework. When using Pick-and-Play, the user picks the

photo shot of a remote device with a mobile phone camera

and performs inputs locally on the phone. The inputs are

then automatically transformed into play-macros that can

be replayed on the remote machine. The play-macro

consists of a series of touch input coordinates and a

homography matrix describing the coordinate mapping

between the mobile display and remote display. By

replaying the play-macro at different speed asynchronously,

the Pick-and-Play framework can handle various practical

scenarios such as the daily tasks simplification, sensitive

data protection, control precision enhancement and control

remapping. A technical evaluation shows that Pick-and-

Play works robustly within the viewing angle of around 63°

in front of the target display. A quantitative evaluation

shows that there is no significant difference on the input

performance between Pick-and-Play and native

applications on mobile device. It suggested that Pick-and-

Play could serve as a reasonable input alternative for

targeting scenarios.

Author Keywords

Automation, camera, macro, multi-device environment

ACM Classification Keywords

H.5.2. User Interfaces: Interaction Styles

INTRODUCTION

Personal computing nowadays incorporates multiple

heterogeneous devices. A single user could carry out daily

tasks across multiple different devices according to the

context of current environment and activity [10, 16].

The trend of increasing personal device numbers led to

many research prototypes for cross-device interaction, e.g.

[3, 6, 9, 13, 18, 19, 21]. In particular, the seminal Pick-and-

Drop project [21] pioneered the pen-based direct

manipulation technique for data transfer, Touch Projector

[6] enabled users to interact with remote displays through

live video on the personal mobile device, and Deep Shot [9]

presented a framework that allow users to capture and

transfer the application states across devices.

Figure 1. Pick-and-Play. (a) the user picked the screenshot of

the remote display and (b) performed the inputs on the local

device. (c) the inputs are transformed into a list of play-macros

for asynchronous replay.

Overall, these previous works either focus on synchronizing

the software states among devices [9, 18, 21] or on

synchronously redirecting the user input from one device to

another [6, 13, 19, 20, 27]. However, synchronizing

software states requires specific support from the software

side [9, 21], i.e. each application has to support the

proposed protocol, while the synchronous input redirection

might involve expensive video processing procedures [6,

19] or additional hardware setup [13, 20].

Complementing these previous efforts, we propose Pick-

and-Play, a framework focusing on user actions, and

explore the design space of the asynchronous cross-device

interaction. The light-weight action-based framework

requires only access to the input system on the OS level and

the permission to capture and transfer the remote

screenshot. Pick-and-Play directly works with existing

applications while its asynchronous characteristics remove

the requirement of expensive video processing.

Submitted to CHI 2014

 - 2 -

We describe the interaction flow of Pick-and-Play through

a real-world scenario (Figure 1). A user was playing a video

game with joystick and at some point had to input the

account information. However, the default joystick input

was slow for text input [25]. With Pick-and-Play, the user

first picked the on-screen keyboard with his phone camera

(Figure 1a) and input the account information with the

touch inputs (Figure 1b). The input sequences were then

transformed into a list of reusable play-macros (Figure 1c).

Afterward, the user could easily log into his account by

replaying the recorded play-macros. In this scenario, Pick-

and-Play brought the touch inputs to a non-interactive

display, and enabled the user to transform daily repeating

input actions into reusable personal macros.

The core component of Pick-and-Play is the play-macro

that can be replayed and migrated between devices. Each

play-macro consists of a series of touch input coordinates

on the local display and a homography matrix, calculated

by computer vision algorithms after picking the remote

screenshot, describing the coordinate mapping between the

local and remote displays.

Beyond the previous example, the Pick-and-Play provides

four unique play-macro playback options that can help

users accomplish tasks in various practical scenarios, such

as daily tasks simplification, sensitive data protection,

control precision enhancement and control remapping

A technical evaluation shows that Pick-and-Play works

robustly within the viewing angle of around 63° in front of

the target display. A quantitative evaluation suggests that

Pick-and-Play has the similar input performance as the

native input methods on the mobile device and could serve

as a reasonable input alternative for targeting scenarios.

RELATED WORKS

Pick-and-Play is largely inspired by previous works about

cross-device interaction and interaction at a distance.

Cross-Device Information Migration

Previous research projects explored the design space of

migrating information across multiple devices. Pick-and-

Drop [21] explored the interaction scheme where users

could drag and drop the objects among different devices.

Remote Clip [18] synchronized the clipboard among

devices. WinCuts [26] allowed multiple users to share and

interact with partial viewport of the window. While the PIE

[20] system focused more on low-level mechanism for

communicating between devices. Shoot&Copy [5] and

Deep Shot [9] shared the information between devices

based on the visual features of files and contents. In

particular, Deep Shot migrated run-time states and users

could resume the state of the application across devices.

Unlike previous works that transfer application states or file

contents among devices, Pick-and-Play migrates users’

input actions and can handle various different practical

scenarios. The Pick-and-Play framework also has the

benefit of being able to directly work with existing

applications.

Interaction at a Distance

Many research prototypes explored the interaction of

controlling virtual or physical objects at a distance. Object-

Oriented Video pioneered the interaction of remote

controlling machines in industrial plants through live video

[27]. Its interaction was further extended in the Touch

Projector project [6] with manual and automatic zoom and

temporary freeze techniques. TouchMe system [11] tele-

operated the pose and position of a robot through the third-

person view video on a touch panel. Both Sketch-and-Go

[22] and exTouch [14] systems provided direct spatial

control over physical actuated objects or robots through live

view video on a mobile device.

Some previous researches focused on using mobile device

to access control and/or share contents on remote large

displays. Pears et al. enabled absolute pointing with a smart

phone by registering both phone and remote public display

[19]. Ballagas et al. [2] introduced the Point & Shoot

technique with which users could select an object by taking

its photo and the Sweep technique that translated the mobile

device movement to the virtual object movement. Virtual

projection [3] projected the information onto a digital

surface using the optical projection metaphor.

Pick-and-Play shares the two phase interaction paradigm,

i.e. taking a picture then manipulating, with many previous

works [2, 3, 5, 9, 19]. Yet our framework is unique for its

ability to asynchronously replay the play-macros in

different speed for different scenarios.

USER INTERFACE

We built a prototype system on the Android platform. The

user interface of Pick-and-Play consists of two main pages:

play page and replay page. Note that our prototype

assumes an established persistent connection between the

local mobile device and the remote machine.

Play Page

In the play page (Figure 2), the user can capture the photo

and record the inputs. Clicking the SHOT button invokes

the camera application on the mobile device for capturing

the screenshot of the remote device, which could be a

television screen, a desktop monitor or a large display. The

user can then manipulate the viewport, e.g. zoom-in and

translate, for easier inputs. When the REC button is toggled

on, our system starts recording users’ input actions.

Unlike the real user interface, the captured photo is static

and does not respond to the input events. To help users

better perceive what has been recorded, we visualize the

recorded inputs as an overlay on the captured photo. The

blue dots represent the clicking inputs and the blue lines

represent the dragging gestures.

 - 3 -

Figure 2. Play page. In this page, the user can invoke the

camera app and record the play-macro. Blue dots are clicking

inputs and arrows are dragging inputs.

Replay Page

Pick-and-Play segments recorded inputs based on the

toggle of the REC button and translates them into a list of

play-macros (Figure 3). At this page, users can configure

how and when to replay the macros on the remote device.

In particular, Figure 3a is the representative thumbnail

image of the macro, copied from the captured photo

according to the bounding box of the inputs. Figure 3b is

the drop-down box for selecting macro replay modes,

Figure 3c is the drop-down box for setting the interval

between repeating replay, Figure 3d is the play button to

invoke the macro and Figure 3e is the drop-down box for

switching between the play page and the replay page.

Figure 3. Replay page. This page contains the list of play-

macros. The user can replay the macro by double tapping the

item or by clicking the play button (d). Other UI elements

include (a) the representative thumbnail of the macro. (b) the

box for replay mode. (c) the box for replay timer. (e) the box

for navigation between play page and replay page.

SCENARIOS

Pick-and-Play provides four play-macro replay modes:

normal replay, fast replay, slow replay, synchronous

replay. In the first three modes, Pick-and-Play replays the

macro at different speed. Whereas the synchronous replay

mode happens on the play page. When the SYNC button is

toggled on (Figure 2), users’ inputs are synchronously

replayed on the remote device. In following paragraphs, we

describe the usage of replay modes with practical scenarios.

Figure 4. Normal Replay. The user first recorded browsing

gestures, e.g. swiping up and down (top). Then with the play-

macros on the replay page (bottom), he could control the

remote device while stay in the favored postures and distances.

Normal Replay: Daily Interaction Made Easy

One major benefit of our action-based framework is its

ability to transform daily interactions into reusable play-

macros. Users can create their own interaction lexicons and

build a personal macro dictionary for daily use.

Figure 5. Periodic Replay. Social games usually require users

to repeatedly clicking on the virtual objects. Users could create

play-macros (top) with periodic timer.

For example, when browsing a long article on the desktop

display, the user would have to repeatedly reach to the

 - 4 -

touch screen or the mouse for page scrolling. Such simple

yet repeated input actions usually make the user

unconsciously lean toward to the display or keep hands on

the input devices on the desk. As a result, the user cannot

stay in the comfortable postures, such as leaning on the

chair. With Pick-and-Play, the user could first create the

play-macros of dragging gestures (for web scrolling) or

tapping gestures (for e-book page turning). Then she could

easily access these controls through the mobile device while

staying in the favored postures and distances.

Figure 5 shows another scenario of simplifying the

repeating daily interaction with Pick-and-Play. Many web

browser games require users to periodically click on

specific spots of the screen. In this example, the user

created macros for clicking on virtual objects. Through the

play-macro list (Figure 5 bottom), the user could set up the

repeating timer for each macro and let Pick-and-Play

periodically play these macros.

Figure 6. Fast Replay. With Pick-and-Play the user could

bring the sensitive data input from public display onto

personal device. In this pin code input example, the user input

the pin code locally, then replay the macro in fast speed to

prevent others from stealing the code.

Fast Replay: Sensitive Data Input in Public Space

Protecting the sensitive data in the environment with

multiple-users or public display has received attention from

researchers [15, 23] and is increasingly vital in our daily

lives. For example, the user might have to enter the

password or private chats through on-screen keyboard in

front of others when playing video games with his friends

in the living room. Alternatively, an engineer might have to

unlock the pattern lock or enter the pin codes of a computer

in front of guests. Even if we hide or encrypt the visual

feedbacks, such as pin code numbers or motion patterns, the

intentional attackers can still steal the passwords by

observing the hand gestures or mouse movements [29].

With Pick-and-Play, users can bring sensitive inputs onto

their personal mobile device. Figure 6 shows the scenario

where the user picked the password input pad to her mobile

device and input the password locally. Then, she replay the

macro in the fast speed on the remote machine to avoid the

potential shoulder surfing attacks.

Slow Replay: More Precise Control

Pick-and-Play also provides the slow replay mode, which is

particular useful when users desire more precise control.

Figure 7 shows the scenario where the user was watching a

video clip of a beautiful goal. However, he encountered two

interaction problems: 1) the real goal clip was only about 50

seconds out of the 11:51 seconds long video and 2) there

was no slow motion function. As a result, to review the

goal, he had to repeatedly drag the video slider to the

beginning of the goal clips, and emulate the slow motion

play by moving the mouse cursor in a constant slow speed.

With Pick-and-Play, the user can build a play-macro by

picking up the goal clips with drag gestures. Then the user

can revisit the goal clip with one single click on the macro

list and play the clip in slow speed by replaying the play-

macro of video bar dragging in slow replay mode.

Figure 7. Slow Replay. With Pick-and-Play, the user could pick

the favored clips from the long video and repeatedly replayed

them in arbitrary speed.

Synchronized Play: Input Mapping

Unlike previous three asynchronous modes, in the

synchronized play mode, Pick-and-Play does not translate

inputs into play-macros but directly replay them on remote

display after coordinate transformation. In this mode, the

 - 5 -

user stayed on the play page and performed inputs on the

captured images, similar to the freeze mode in Touch

Projector [6].

In this mode, Pick-and-Play complements the original input

method on target device with the benefits of multi-touch

inputs. It is especially beneficial in the scenarios when only

sub-optimal input methods are available to the users or

when the touch panel is in a distance.

Figure 8. Synchronized Replay. Pick-and-Play can translate

user inputs onto remote machine in real-time and bring the

touch functions to non-interactive display.

Figure 8 demonstrates an example where the user picked

the UI of calculator on a remote display and carried out the

input tasks using the touch input on the smart phone.

ALGORITHM AND IMPLEMENTATION

At the core of Pick-and-Play are two main algorithms:

screen matching and input transformation. The former

establish the coordinate system mapping between the

displays on the mobile device and remote device and the

later translate the touch input sequences into mouse input

sequences. In the end of the section, we also briefly

describe the implementation on the remote machine side.

Screen Matching

Upon the initial connection of Pick-and-Play, the remote

machine captures a screenshot, Iremote, and transfers it to

user’s mobile device. Afterward, whenever the user take the

picture, Ilocal, the system automatically runs the homography

calculation routine that calculates the coordinate mapping

between Ilocal and Iremote. The Pick-and-Play deploys a lazy

update approach on Iremote that it only requests Iremote when

failing to establish the correct homography (the average re-

projection error of feature points is larger than 10 pixels).

The Pick-and-Play utilize the standard image matching

algorithm, similar to DeepShot [9]. The homography

calculation routine first downsamples Ilocal and Iremote to half

resolution for acceleration. It then extracts the feature

points from both Ilocal and Iremote using Speeded-Up Robust

Features (SURF) algorithm and calculates the best

matching pairs with Fast Approximate Nearest Neighbor

Search Library (FLANN). Finally, the homography

between images is calculated using the RANSAC-based

method (Figure 9).

Figure 9. A screen matching example. Left the screen shot

(Iremote) and right the image captured by phone camera (Ilocal).

Colorful lines between images indicates feature points. The

blue rectangle in camera view is constructed by connecting the

four projected corners of Iremote on Ilocal.

Note that an alternative to capturing image with the phone

camera is to directly requesting the screenshot from the

remote device. Pick-and-Play provides multiple options to

users, including always use captured photos, always request

screenshots from remote machine, and request the

screenshot when the matching algorithm fails.

The default option for our prototype is to always use

captured photo. It is because the captured photo better fits

users’ perspective, the user can arbitrarily capture sub-

regions of the screen, and this option consumes less

bandwidth, due to the lazy updating policy. Nevertheless,

our core ideas of the action-based framework and the play-

macro are applicable for all options.

Input Transformation

With the homography between devices, we can map the

inputs on local display onto remote one. However, two

issues remain. First, the input method on local and remote

device might differ, e.g. the touch input on mobile device

and the mouse input on desktop computer. Second, the

touch input is less precise due to the fingertip size and the

occlusion by fingers.

In the desktop environment, commonly used mouse inputs

are clicking and dragging. The Android device also

provides an event listener for press event, release event, and

movement event. However, unlike its desktop counterpart,

the events are much noisier. In particular, when a user’s

finger is on the surface, the device would continually issue

press events, and some accidental fingertip rolling could

falsely trigger the movement event. As a result, a naïve

direct mapping between the touch event and the mouse

event could produce undesired or confusing results. The

detailed investigation about the input point model is out of

the scope of this paper. More discussions can be found in

[4, 12, 28].

In the following paragraphs we describe the heuristic

algorithms we used for categorizing touch input sequences

into clicking or dragging and the algorithm for converting

the touch input positions to mouse positions.

 - 6 -

Categorization of Touch Inputs

First, we define a complete touch input sequence as a

sequence that starts with a press event and ends with a

release event. To categorize the sequence, we calculate the

mean and standard deviation of the 2D coordinates in the

input sequence. If the pixel distance of two standard

variance is smaller than 320 pixel, then we categorize it as a

clicking sequence, otherwise a dragging sequence. The

number of 320 pixel corresponds to 26mm (1 inch) on our

prototype device (Google Nexus 4, 320 dpi), which is the

average size of adult thumb as well as the minimum

targeting size reported in [8].

Coordinate Conversion from Touch Inputs to Mouse Inputs

The conversion between touch input and mouse input

involve the precision problem. Researches showed that

touch input increasing target time and error rate comparing

to more precise input method such as stylus or mouse [12,

28]. Fortunately, nowadays most smart phone equip high

mega pixel camera (8MP camera, 3264x2176 photo, for

Google Nexus 4). It implies that after taking the photo with

Pick-and-Play, users can still zoom-in the picture and

compensate the imprecise touch input with larger UI

element size.

In Pick-and-Play we deployed heuristic algorithms on the

clicking and dragging sequence. For the clicking input

sequence, we simply take the average of warped touch

positions as the mouse clicking position. For the dragging

sequence, we interpolate the potentially sparse touch input

positions and obtain a sequence of dense mouse input

positions for smoother replay quality. More specifically, we

first warped every touch input points onto the screen space

of remote display. Then for each consecutive point pair, we

interpolate in-between pixel positions with the Bresenham's

line algorithm [7]. In the end, we have a sequence of pixel

positions, whose L1 distance is either one or two.

In early design phase, we considered using a b-spline

approximation to smooth the line and remove the potential

outliers, however, the computational cost is high and for the

targeting scenarios described in the paper, current heuristic

method already produced satisfying result.

Implementation on Remote Machine

For the remote machine, we implemented a light-weight

application. It communicates with remote devices via

sockets, captures screenshots and simulate the mouse input

events via the Robot class in Java SDK.

TECHNICAL EVALUATION

We conducted a technical evaluation to test the feasibility

of the screen matching algorithm and determine the proper

working area of Pick-and-Play. Note that in the evaluation

of the DeepShot [9], the independent variable was the

tilting angle of the laptop display. We complement their

evaluation by studying the feasible horizontal spanning

angle for the image matching algorithm.

Environment Setup

In the evaluation, the remote device was a 13-inch Sony

VAIO laptop with the screen resolution of 1920x1080. The

mobile device was a Google Nexus 4 smart phone (4.7 inch

display with 1280x768 resolution and an 8 MP camera

capturing the image at 3264x2176 resolution). The

evaluation was conducted in a room filled mostly with

fluorescent light. Both the laptop and the phone were put on

a flat table and initially the phone was 80 cm in front of the

laptop display (point P in Figure 10a).

Figure 10. Technical evaluation. (a) shows the setup of the tech

evaluation. Both the display and the phone are on the same

flat table. Green dots indicates the successful image matching,

red cross the failed ones. (b) is the photo captured from 40cm,

0°. (c) is the photo captured from 40cm, 36° (i.e. 30cm to the

right), where the image matching algorithm failed.

Procedure

Starting from the point P in Figure 10, we moved the phone

to the right by 5cm on the desk (along the dot lines in

Figure 10a), pointing the phone camera to the screen, then

captured a photo (e.g. Figure 10b). The procedure was

repeated until the algorithm consecutively failed to estimate

the correct homography twice (i.e. the average re-projection

error of feature points is larger than 10 pixel). Figure 10c

was a sample photo where our algorithm failed to estimate

the correct homography. The same procedure was repeated

at the distance of 40cm and 60cm to the laptop display.

Result and Discussion

In the 40cm case, the CV algorithm successfully estimated

the correct homography until the phone is 25cm (32°) away

from the center. In 60cm and 80 cm cases, the threshold

distances are 40cm (33.7°) and 45cm (29.3°) respectively.

We visualized these threshold distances as green dots in

Figure 10. In sum, in our lab environment, the mean

working viewing angle is about 63.2° (31.6° x 2) in front of

the LCD.

As a post-experiment, we asked two participants to both

randomly take 25 pictures in this 40 to 80 cm, 63.2°

viewing angle area. Our screen matching algorithm

 - 7 -

performed robustly with the success rate of 86% (43 out of

50 attempts succeeded) in the test.

Still, the working range of Pick-and-Play is also largely

related the quality of images captured by the phone camera,

the size of the display as well as the computer vision

algorithm for detecting and matching feature points. In our

prototype, we did not use smart phone with the high-end

camera nor did we extensively fine tune the screen

matching algorithm. Nevertheless, this technical evaluation

demonstrated that even with a mid-range mobile phone

(Nexus 4), Pick-and-Play could still perform well in a

reasonably wide working area.

QUANTITATIVE USABILITY STUDY

We described various scenarios where Pick-and-Play could

help users achieve different tasks. However, the input

performance of Pick-and-Play is not clear. In particular,

how well can users interact with captured static images, in

comparison to live user interfaces that provide real time

visual feedback.

More specifically, Pick-and-Play requires users to capture a

screenshot of the remote display, (optionally) translate or

zoom the viewport and then perform inputs on the static

image. When compared to a real user interface on the

mobile device, Pick-and-Play introduces additional

overhead of capturing and manipulating the photo and it

requires users to interact with a static photo, which cannot

provide visual feedbacks. For example, there are no

appearance changes when the buttons are pressed and the

resulting input texts only appear on the remote display.

Our hypothesis was that the lack of the local visual input

feedbacks should not significantly reduce the input

performance in the proposed scenarios. We examined the

hypothesis through a quantitative user study that measured

the input times and the error rates of five different input

methods in two input tasks. Note that we did not expect

Pick-and-Play to out-perform physical keyboard or the

native input methods on the mobile device. However, if the

hypothesis were supported by the study, we claimed that

Pick-and-Play could be a reasonable alternative input

method for the proposed scenarios.

Participants

Ten participants were recruited from our computer science

institute. Four of them were native English speakers. All

participants were used to the US keyboard layout and had

been using smartphone with touch screen on daily-basis.

Figure 11. User study setup.

Devices and Input Methods

Five input methods were used in the user study, including

the keyboard, mouse, joystick, native mobile application

and Pick-and-Play (Figure 11a). The keyboard was the one

with standard 81-key US layout, the joystick was the xbox

controller, and both the native mobile application and Pick-

and-Play ran on a Google Nexus 4 phone (same as

technical evaluation). Finally, an Eizo 24 inch screen with

Figure 12. Per-char input time of equation (top) and text input task (bottom). The x-axis is the concatenation of input

characters and y-axis the average per-character input time among users. Equal sign in x-axis equal to the end of input line.

 - 8 -

1920x1080 resolution was used in the study. Note that in

the test, Pick-and-Play was set to synchronized mode.

Tasks

The study consisted of two input tasks that were designed

based on the scenarios described in previous sections.

Task 1: Equation Input

In the equation input task, every participant used five input

methods to transcribe twenty equations, each consisting of

two three-digit numbers and one operator. Among twenty

equations, the number of appearance among digits and

signs are equal.

Task 2: Text Input

In this task, every participant used five input methods to

input ten password strings, each consisting of ten randomly

picked English characters. This task used the random

characters to minimize the carry over effects between input

methods and to simulate the password input scenario.

The texts to be input were printed out and put into a

transparent file folder (Figure 11b). The participants could

place the folder at any favored position. There were five

different sheets with different equation and text orders. All

participants went through the sheets in fix order while the

order of input methods were counter-balanced.

Figure 13. (a) On-screen calculator. Key 4 was selected and

thus the different color. (b) Top: the preloaded photo in Pick-

and-Play. Bottom: after the participants zoomed in the photo.

For both tasks, the participants were told to transcribe the

scripts naturally. It was OK to have errors in the transcribed

text and participants could fix errors if noticed, i.e. the

Recommended error correction condition in [1].

Note that, the Pick-and-Play method preloaded a previously

captured photo (top row of Figure 13b). Users started by

zooming and translating the viewport (bottom row of Figure

13b), then performed the input tasks. We treated the photo

capturing part as a control variable for better observing the

correlation between the visual feedback and the input

performance.

User Interfaces Feedbacks

Since the study was designed to evaluate how visual

feedbacks affects the input performance, this section

elaborates more on the user interface feedbacks of each

input method.

When using keyboard, mouse and joystick, the input texts

were shown on the remote display alongside the virtual

calculator or keyboard (Figure 13). For the mouse and

joystick methods, participants selected desired keys via the

on-screen keyboard and calculator. The on-screen key

changed its color when the cursor hovered over it or when it

was the focus of joystick selection, e.g. Key4 in Figure 13a.

For the mobile application input method, the participant

performed the tasks with the standard virtual keyboard and

calculator in the Android OS. All feedbacks were turned on,

including the vibration, sound and key pop-up. When using

the Pick-and-Play, we only provided the vibration feedback

upon the Android touch event.

Evaluation Result

Figure 14 shows the averaged input time of 10 participants

for both equation and text input tasks. The red stacked bars

on the Pick-and-Play column indicates the averaged zoom-

in time, which are 4.23s for the equation input and 4.62s for

the text input. The average width of the keys on the display

were 15.1mm and 9.2mm respectively, which were both

reasonable sizes for touch input [12].

Figure 14. Average input time. Red stack bars show the

averaged zoom-in time. Error bars indicates 95% CI.

For equation input task, the ANOVA test reports no

significant difference among five input methods. For text

input task, the ANOVA test reports significant difference

(F(1, 48)=7.07, p<0.05) and the post-hoc t-tests reveals

significant difference between the Pick-and-Play and all

other input methods (all p<0.05) except Mouse. However,

when excluding the zoom-in time, the post-hoc t-tests

reports no significant difference between Pick-and-Play and

the Mouse and Pick-and-Play and the App.

Figure 15 shows the input error rate for each input method

with the total error rate metrics proposed by Soukoreff and

MacKenzie [24]. The metrics has the advantage of being

able to handle the natural input errors and corrections and

 - 9 -

thus fit our study well. For both tasks, error rates for all

input methods are below 4%.

Figure 15. Total error rate [24]. Error bars indicates 95% CI.

Discussion

When excluding the initial zoom-in overhead, the

evaluation result supports our hypothesis that the lack of

local input feedbacks would not significantly affect the

input performance. Note that in the real-world scenario, the

initial overhead of the Pick-and-Play should also include

the pick time, i.e. time to take a picture. However, since the

overhead only happens in the beginning of the session, its

impact should mitigate as the session lengthens. Also, after

users constructing their play-macros, the subsequent uses of

play-macros will not have this overhead cost.

We also observed similar input behaviors among users from

the collected data. In particular, by concatenating all

characters of the input tasks as x-axis and average per-char

input time as y-axis, we have Figure 12. In the equation

input task (top row), the small peaks of input times align

fairly well with the positions of the first char of the three-

digit number. In the text input task, despite less clear, small

peaks can be found right after the equal sign, i.e. at the start

of the new string.

Our observations suggests that these peaks happened as the

participant moved his attentions among the input device,

the typescript sheets, and the remote display. From the

graph, this behavior is almost identical for all five input

methods among all participants, regardless of the presence

of local visual feedback or not.

It is also interesting to note those tallest peaks in the graph.

The input log shows that these peaks corresponds to the

point where the user were fixing previous incorrect inputs.

The facts that these tallest peaks are from the Pick-and-Play

could imply that the lack of local visual feedback and the

less familiar input paradigm could have caused longer error

fixing times. However, the low input error rate mitigates

this potentially longer error fixing time in our user studies.

In sum, the evaluation result supports our hypothesis and

suggest that the Pick-and-Play is a better or a reasonable

alternative input method in various scenarios described

earlier in the paper.

DISCUSSION AND FUTURE WORKS

The Pick-and-Play features unique asynchronous replay

functions that could be useful in various scenarios.

However, the asynchronous replay requires the position of

user interface elements, e.g. windows frame, buttons, on the

screen to stay the same as the captured photo. It is not a big

constraint for modern full screen applications in

Android/iOS/Win8, e.g. log-in/chatting window, video

player and on-screen keyboards, whose UI elements mostly

stay in fixed places. However, for the traditional desktop

environment, where the application windows might change

its position, play-macros could become invalid if UI

positions differs. In such cases, users could either rebuild

the play-macro or switch to synchronize mode for direct

manipulation. As a future work, we plan to track the UI

positions with computer vision algorithms [30] and update

the macros accordingly.

Current Pick-and-Play prototype supports the operation

transformation between the mouse input and the touch

input, which covers a wide range of devices such as desktop

PC, smart phone and smart TV. However, for some special

closed systems that only support inputs from specific

controllers, we plan to build a dedicated authoring UI

helping users manually creating the mapping between input

actions. We believe such UI will also encourage users to

author personal input mappings, such as associating multi-

touch gestures to specific functions [17].

Finally, our current prototype assumes an established

connection between the mobile device and the remote

device. We are currently investigating the possibility of

pairing devices with the NFC or Bluetooth.

CONCLUSION

We propose Pick-and-Play, a light-weight asynchronous

action-based framework. Complementing previous state-

based frameworks, the Pick-and-Play migrates input

actions and can directly work with existing applications.

With the Pick-and-Play, users can easily transform daily

interactions into reusable play-macros, which can be

replayed in different modes for scenarios such as daily

interaction simplification, sensitive data protection, and

control precision enhancement. The technical evaluation

shows that the Pick-and-Play has a reasonable working area

and the quantitative user study suggest it a reasonable

alternative input method in the targeting scenarios.

REFERENCES

1. Ahmed Sabbir Arif and Wolfgang Stuerzlinger. (2009).

Analysis of text entry performance metrics, Science and

Technology for Humanity, IEEE Toronto International

Conference. 100-105

2. Rafael Ballagas, Michael Rohs, and Jennifer G.

Sheridan. (2005). Sweep and point and shoot:

 - 10 -

phonecam-based interactions for large public displays.

ACM CHI. 1200-1203.

3. Dominikus Baur, Sebastian Boring, and Steven Feiner.

(2012). Virtual projection: exploring optical projection

as a metaphor for multi-device interaction. ACM CHI.

1693-1702.

4. Xiaojun Bi, Yang Li, and Shumin Zhai. (2013). FFitts

law: modeling finger touch with fitts' law. ACM CHI.

1363-1372.

5. Sebastian Boring, Manuela Altendorfer, Gregor Broll,

Otmar Hilliges, and Andreas Butz. (2007). Shoot &

copy: phonecam-based information transfer from public

displays onto mobile phones. ACM Mobility. 24-31.

6. Sebastian Boring, Dominikus Baur, Andreas Butz, Sean

Gustafson, and Patrick Baudisch. (2010). Touch

projector: mobile interaction through video. ACM CHI.

2287-2296.

7. Jack Elton Bresenham. (1965) Algorithm for computer

control of digital plotter. Journal of IBM System. 4, 25.

8. Anthony Hall, James Cunningham, Richard Roache and

Julie Cox. (1988). Factors affecting performance using

touch entry systems: Tactual recognition fields and

system accuracy. Journal of Applied Psychology, 4,

711–720.

9. Tsung-Hsiang Chang and Yang Li. (2011) Deep shot: a

framework for migrating tasks across devices using

mobile phone cameras. ACM CHI. 2163-2172.

10. David Dearman and Jeffery S. Pierce. (2008). It's on my

other computer!: computing with multiple devices. ACM

CHI. 767-776.

11. Sunao Hashimoto, Skihiko Ishida, Masahiko Inami and

Takeo Igarashi. (2011). An Augmented Reality Based

Remote Robot Manipulation. ICAT.

12. Christian Holz and Patrick Baudisch. (2011).

Understanding touch. ACM CHI. 2501-2510.

13. Brad Johanson, Greg Hutchins, Terry Winograd, and

Maureen Stone. (2002). PointRight: experience with

flexible input redirection in interactive workspaces.

ACM UIST, 227-234.

14. Shunichi Kasahara, Ryuma Niiyama, Valentin Heun,

and Hiroshi Ishii. (2013). exTouch: spatially-aware

embodied manipulation of actuated objects mediated by

augmented reality. ACM TEI. 223-228.

15. David Kim, Paul Dunphy, Pam Briggs, Jonathan Hook,

John W. Nicholson, James Nicholson, and Patrick

Olivier. (2010). Multi-touch authentication on tabletops.

ACM CHI. 1093-1102.

16. Yang Li and James A. Landay. (2008). Activity-based

prototyping of ubicomp applications for long-lived,

everyday human activities. ACM CHI. 1303-1312.

17. Hao Lü and Yang Li. (2012). Gesture coder: a tool for

programming multi-touch gestures by demonstration.

ACM CHI. 2875-2884

18. Robert C. Miller and Brad A. Myers. (1999).

Synchronizing clipboards of multiple computers. ACM

UIST. 65-66.

19. Nick Pears, Daniel G. Jackson, and Patrick Olivier.

(2009). Smart Phone Interaction with Registered

Displays. IEEE Pervasive Computing 8, 2, 14-21.

20. Jeffrey S. Pierce and Jeffrey Nichols. (2008). An

infrastructure for extending applications' user

experiences across multiple personal devices. ACM

UIST. 101-110.

21. Jun Rekimoto. (1997) Pick-and-drop: a direct

manipulation technique for multiple computer

environments. ACM UIST, 31-39.

22. Daisuke Sakamoto, Koichiro Honda, Masahiko Inami,

and Takeo Igarashi. (2009). Sketch and run: a stroke-

based interface for home robots. ACM CHI. 197-200.

23. Dominik Schmidt, Julian Seifert, Enrico Rukzio, and

Hans Gellersen. (2012). A cross-device interaction style

for mobiles and surfaces. ACM DIS. 318-327.

24. William Soukoreff and Scott MacKenzie. (2003).

Metrics for text entry research: an evaluation of MSD

and KSPC, and a new unified error metric. ACM CHI.

113-120.

25. Andrew D. Wilson and Maneesh Agrawala. (2006).

Text entry using a dual joystick game controller. ACM

CHI. 475-478.

26. Desney S. Tan, Brian Meyers, and Mary Czerwinski.

(2004). WinCuts: manipulating arbitrary window

regions for more effective use of screen space. ACM

CHI. 1525-1528.

27. Masayuki Tani, Kimiya Yamaashi, Koichiro Tanikoshi,

Masayasu Futakawa, and Shinya Tanifuji. (1992).

Object-oriented video: interaction with real-world

objects through live video. ACM CHI. 593-598.

28. Daniel Vogel and Patrick Baudisch. (2007). Shift: a

technique for operating pen-based interfaces using

touch. ACM CHI. 657-666.

29. Keita Watanabe, Fumito Higuchi, Masahiko Inami, and

Takeo Igarashi. (2012). CursorCamouflage: multiple

dummy cursors as a defense against shoulder surfing.

SIGGRAPH Asia Emerging Technologies. Article 6

30. Tom Yeh, Tsung-Hsiang Chang, and Robert C. Miller.

(2009). Sikuli: using GUI screenshots for search and

automation. ACM UIST. 183-192.

