
LEARNING SUBJECTIVE IMAGE QUALITY ASSESSMENT FOR TRANSVAGINAL
ULTRASOUND SCANS FROM MULTI-ANNOTATOR LABELS

Author(s) Name(s)

Author Affiliation(s)

ABSTRACT
This paper proposes a novel AI model that automatically as-
sesses the quality of transvaginal ultrasound (TVUS) images,
offering support to sonographers, especially those still learn-
ing, in acquiring high-quality scans for gynecological pathol-
ogy diagnosis. Addressing the challenge of varying inter-
pretations by different medical professionals, this model ap-
proaches the issue as a multi-annotator noisy label problem.
Our novel machine learning architecture first aggregates qual-
ity assessments from multiple raters using a weighted ensem-
ble algorithm to estimate consensus labels. The model then
employs a multi-axis vision transformer to enhance the pro-
cess of image quality evaluation. We evaluated the model on
a new multi-annotator TVUS dataset, where our model suc-
cessfully predicted image quality with an accuracy of 80%.
This development represents an exciting first step in empow-
ering sonographers to assess scan quality on the spot, reduce
the need for repeated imaging, and improve the diagnosis of
gynecological pathology.

Index Terms— Image Quality Assessment, Multi-Rater,
Transvaginal Ultrasound

1. INTRODUCTION

Transvaginal Ultrasound (TVUS) is the first-line tool in the
diagnosis of many gynaecological conditions and has, in re-
cent years, emerged as a promising, non-invasive diagnostic
tool for endometriosis, with an average sensitivity rate of 79%
in recent findings [1]. It has gained recognition for its poten-
tial to reduce unnecessary laparoscopy, which is considered
the gold standard for diagnosing endometriosis , but presents
drawbacks including dependency on surgical skill, potential
for injury, and a small but relevant mortality rate [2]. How-
ever, obtaining high-quality TVUS images, which are cru-
cial for diagnosis, requires a high level of sonographic ex-
pertise. Currently, this level of expertise is lacking within the
field, with few people posessing the skills required to perform
TVUS to diagnose endometriosis. [3].

In this context, an AI model capable of assessing the qual-
ity of TVUS images would be of significant value. It could
assist non-specialist sonographers in assessing the quality of
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TVUS images during the scan, thereby providing high qual-
ity scans that could facilitate an accurate diagnosis of en-
dometriosis.This would reduce the need for patients to return
for subsequent imaging sessions, improve the patient experi-
ence and lead to better outcomes [1]. However, developing
an AI model for the analysis of TVUS images poses unique
challenges due to the involvement of multiple professionals.
These images are initially captured by sonographers and later
interpreted by radiologists or sonologists for diagnosis. Con-
sequently, the model needs to account for the varying perspec-
tives of these professionals. To the best of our knowledge, no
multi-annotator dataset for TVUS images currently exists for
the development of AI models.

To achieve this objective, we introduce a novel AI model
for TVUS image quality assessment, specifically tailored to
accommodate data with multi-annotator labels and a new
multi-annotator TVUS image quality assessment dataset.
The training process of our model unfolds in three stages : 1)
Fine-tuning a pre-trained multi-axis vision transformer using
a small subset of multi-annotated TVUS images, applying
majority voting to reconcile label discrepancies. 2) Identify-
ing noisy labels, evaluating the accuracy of each annotator’s
annotations, and generating refined labels. 3) Further fine-
tuning the multi-axis vision transformer with these enhanced
labels to improve model performance. The new TVUS dataset
consisting of 150 TVUS images from 50 unique patients, with
each image evaluated by six medical professionals, including
two sonographers, two radiologists, and two gynecologists.
Furthermore, we have adopted a novel grading system for ap-
praising TVUS image quality, as proposed by Deslandes et al.
(2023) [4], which considers various subjective factors such
as the visibility of anatomic structures, interpretability of the
scan, and the reliability of the scan for diagnostic purposes.
Contributions This paper represents the first exploration of
multi-annotator subjective image quality assessment (IQA)
for TVUS scans. This paper offers two principal contribu-
tions: First, we introduce and implement a novel approach
for training an AI model on subjective IQA using a dataset
annotated by multiple annotators. This method is designed
to leverage the diverse perspectives of various annotators to
enhance the model’s assessment capabilities. Second, we es-
tablish the first dataset for multi-annotated subjective IQA
specifically tailored for TVUS scans, facilitating the diagnosis
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Fig. 1. TVUS images of each image quality grade. The anatomy in the Grade 1 image is occluded and not clearly recognisable.
In the Grade 2 image, the target anatomy feature’s are more prominent. The Grade 3 image anatomy is confidently recognisable
with high image clarity.

of endometriosis. This dataset is a pioneering resource in the
field. The encouraging outcomes highlight the model’s po-
tential to assist sonographers in capturing high-quality TVUS
images, which in turn can provide invaluable support to gy-
necologists in the accurate diagnosis of endometriosis.

2. RELATED WORK

IQA for Ultrasound Images has been a topical area of re-
search. Highlighting recent developments, Zhang et al. [5]
demonstrated that CNNs outperform traditional methods in
evaluating ultrasound image quality, using a dataset of high-
quality images degraded by various techniques. Luo et al.
[6] introduced a multitask learning-based IQA scheme for fe-
tal sonography, ensuring essential anatomical structures are
clear, achieving top performance in assessing fetal head, ab-
domen, and heart sections. Asch et al. [7] presented a ma-
chine learning algorithm to estimate ventricular contraction
in echocardiography, achieving clinical-level sensitivity and
specificity. Last but not least, Schneider et al. [8] devel-
oped an algorithm for echocardiogram image quality assess-
ment with 83.2% accuracy, coupled with a feedback system
for echocardiographers to improve image quality. However,
exiting methods have not explored IQA tasks within a multi-
annotator context. Furthermore, there is a lack of datasets
specifically collected for subjective, multi-annotator IQA of
TVUS. Addressing these gaps, this paper introduces a model
designed for multi-annotator IQA tasks along with a multi-
annotator TVUS dataset.

Multi-annotator classification involves using the input
of multiple annotators and assigning the correct label to a
sample. There a few common methods to reach a consen-
sus label such as majority voting or weighted voting. These
approaches are often too simplistic produce high quality esti-
mates of the true label. Goh et al [9] proposed CROWDLAB
a method which combines trained classifier class prediction
probabilities with multiannotator ratings to produce new con-
sensus labels. This approach produces superior performance
when compared to other methods for inferring consensus la-

bels from multiannotated data. This method will be adopted
as solution to the multirater aspect of this problem.

3. METHODOLOGY

The proposed multiaxis vision transformer model is pictured
in the figure. The method consists of 3 distinct aspects: a re-
labeling model, a weighted ensemble algorithm and a qual-
ity prediction model. The relabeling model is pre-trained
on ImageNet-1K and then finetuned using on a dataset of
multiannotated TVUS images. The weighted ensemble al-
gorithm uses the class prediction probabilities from the rela-
beling model and the multiannotator’s labels to improve the
consensus labels of each sample. Finally, a quality prediction
model is pretrained on ImageNet-1K and then finetuned using
the improved consensus labels.

Formally, let DB = {(xi, yi)}Ni=1 represent the TVUS
dataset with N TVUS images x ∈ χ ⊂ RH×W×D paired
with the quality label y ∈ {0, 1, 2} where H , W and D are
height, width and depth of the TVUS image respectively. Let
DE = {(pi, ai)}Ni=1 denote the class prediction probabili-
ties dataset, with N -class categorical probabilities where p ∈
P = (c0, c1, c2), c0 + c1 + c2 = 1 and cj represents the prob-
ability of class j for the sample. The prediction probabilities
are paired with multiannotator labels a ∈ A = (l1, l2, ..., lk)
where l is the label of an annotator and K is the number of
annotators. Once the weighted ensemble algorithm is used for
relabeling, let Dt

R = {(xt
i, y

t
i)}Ni=1 be the improved “true” la-

bel dataset, with the same images as DB but new labels. Let ω
represent the pretrained weights from training on ImageNet-
1K. Let fM : a → ŷ be the majority voting algorithm which
returns the set of the most commonly occurring labels for a
sample. The label improvement model fθL : χt → ∆, where
∆ ⊂ [0, 1]3 is the probability simplex, is initialised by ω and
trained with dataset DB . The weighted ensemble algorithm
fW : (p,A) → {0, 1, 2} uses dataset DE , where p is the class
prediction probabilities from the well-trained model fθL . The
final quality prediction model fθF : χt → ∆ is initalised by
ω and trained with Dt

R.



Fig. 2. The architecture of the proposed MaxViT model.

Algorithm 1: Proposed algorithm
Input: TVUS images X , multi-annotator labels A
Output: Predicted quality of TVUS image p
Initialize the model with the pre-trained weights ω.
Ŷ = fM (A) and DB = (X, Ŷ )
while training has not converged do

p = fθL(DB , ω)

l(DB ,W ) = −
∑N

i=1 yi log(pi)
end
C = fW (p,A) and Dt

R = (X,C)
while training has not converged do

p = fθF (D
t
R, ω)

l(Dt
R,W ) = −

∑N
i=1 y

t
i log(p

t
i)

end

3.1. Multi-annotator Consensus Labeling

The first round of training is preceded by majority vote
to generate a consensus label for each sample; tiebreaks
are resolved by randomly selecting one of the tied labels.
Formally, let C(0), C(1), C(2) be the number of ele-
ments of a which are equal to 0, 1 and 2 respectively. Let
z = max(C(0), C(1), C(2)), if C(y) = z, it is in V . Let
v be the majority vote label. If |V | > 1, v = V1, else
v = R(V ) where R(V ) randomly returns an element of set
V . The model is then trained on this set of sample, consensus
label pairs. Once the training is complete, following [9], the
weighted ensemble algorithm is used to generate new con-
sensus labels for each TVUS image. The model’s weights
are reset and then trained with the new consensus labels. The
weighted ensemble algorithm is formally defined in Equation
1. Where p̂Aj are class prediction probabilities, representing
each annotators label as a probabilistic prediction and ωj , ωM

are weights for the relative trustworthiness of each annotator
and the classifier respectively.

p̂CR(Yi|Xi, {Yij}) =
ωM · p̂M (Yi|Xi) +

∑
j∈Ji

ωj · p̂Aj(Yi|{Yij})
ωM +

∑
j∈Ji

ωj
(1)

3.2. Model Training

The multi-axis vision transformer uses pre-trained weights
from ImageNet-1K. We then finetune this model on our
dataset. The limited size of the dataset made pretraining a
necessity. Formally, we can formalize the pre-training pro-
cess as pti = fθF (x

t
i), for all xt

i ∈ χt, where the pti is the
prediction given the data sample xt

i.
We adopt cross-entropy as our objective function. For-

mally:

l(Dt
R,W ) = −

N∑
i=1

yti log(p
t
i). (2)

The model is optimized through minimising the l(Dt
R,W )

objective function.

4. EXPERIMENTS

4.1. Dataset

The dataset contains 150 ultrasounds images from 50 unique
patients. Each patient has provided a TVUS image of their
left ovary, right ovary and uterus. Each image is annotated
by 6 medical professionals: 2 sonographers, 2 radiologists
and 2 gynae sonologists. The medical professional’s used the
grading system [4] to determine the quality of each image.
We adapted the system to remove the intermediary grades of
2 and 4. Therefore, the annotators graded the images 0, 1,
2 and 3, corresponding to the grades 0, 1, 3 and 5 from the
grading system. All images that were graded 0 or 1 were
merged together into one class. This resulted in each image
being graded either 0, 1 or 2 representing a very poor, sub-
optimal or optimal image. For training, 40 patients and their
associated 120 images were used. To validate our model, we
selected the remaining 10 patients and used their 30 images
as the validation set. This set of patients was selected so that
the distribution of image quality would be the same across the
training and validation sets. The dataset is imbalanced with
351 class 2 annotations, 331 class 1 annotations and 218 class
0 annotations; class 0 is underrepresented making up 24.20%
of annotations. This imbalance is exacerbated when observ-
ing the majority voted labels where there are 27 class 0 labels,
52 class 1 labels and 71 class 2 labels. Class 0 only makes up
18.00% of the majority voted labels. Class 2 labels are over
represented making up 47.33% of the majority voted labels.



Model Consenus Label Accuracy Macro Average R Class 0 Class 1 Class 2
P R F1 P R F1 P R F1

Resnet50
M 0.57 0.59 0.67 0.86 0.75 0.38 0.33 0.35 0.62 0.57 0.59

WE 0.63 0.65 0.50 0.75 0.60 0.67 0.50 0.57 0.67 0.71 0.69

Resnet101
M 0.53 0.53 0.56 0.71 0.63 0.33 0.22 0.27 0.60 0.64 0.62

WE 0.60 0.69 0.50 1.00 0.67 0.64 0.58 0.61 0.64 0.50 0.56

MaxViT
M 0.63 0.64 1.00 0.71 0.83 0.45 0.56 0.50 0.64 0.64 0.64

WE 0.80 0.77 0.75 0.75 0.75 0.88 0.64 0.74 0.78 0.93 0.85

Table 1. Performance of the proposed algorithm compared with majority voting on the TVUS dataset using Resnet50,
Resnet101 and MaxViT. WE is weighted ensemble, M is majority voting, R is recall, P is precision, F1 is F1-score.

Each image in the dataset was resized to a size of 224x224
and normalised. Each image was also augmented using Au-
toAugment using the ImageNet augmentation policy.

4.2. Implementation Details

To generate the improved labels, the multiaxis vision trans-
former is trained for 100 epochs on the TVUS dataset. The
training used a batch size of 4 with AdamW optimiser and a
learning rate of 5e-5. The MaxViT network loads pretrained
weights from ImageNet-1k as do Resnet50 and Resnet101.
Early stopping was used, so if the validation set accuracy
did not improve from the global maximum for 10 epochs
the training would terminate. The saved checkpoint with the
greatest validation set accuracy was then combined with the
weighted ensemble algorithm to generate the improved labels.
The MaxViT network was then then fine-tuned for 100 epochs
with early stopping using a patience of 10, batch size of 4 with
AdamW optimiser and a learning rate of 5e-5. We evaluated
our method using accuracy and macro average recall and per-
class precision, recall and F1-score.

4.3. Overall Model Performance

The validation accuracy of the proposed algorithm was 0.80
and the macro average recall was 0.77. Resnet50 had an accu-
racy of 0.63 and macro average recall of 0.65. Resnet101 had
an accuracy of 0.60 and macro average recall of 0.60. Each
model’s accuracy and macro average recall improved when
changing from majority vote to our proposed algorithm.

4.4. Analyses

Despite the imbalanced dataset each model’s accuracy and
macro average recall are similar. This indicates that perfor-
mance is not biased towards any class. When interrogating
the performance of MaxViT with weighted ensemble we can
see that the F1 scores are 0.75, 0.74 and 0.85 for class 0, class
1 and class 2 respectively, this further reinforces the balanced
performance across all classes. MaxViT had the most signifi-
cant improvement in both accuracy and macro average recall
when using weighted ensemble compared to majority voting.

The class 0 F1-score decreased from 0.83 to 0.75, however,
class 1 increased significantly from 0.50 to 0.74 and class 2
increased from 0.64 to 0.85. This indicates that the labels pro-
duced by the weighted ensemble algorithm lead to the train-
ing of a model which could better identify class 1 and class
2 images. This improvement in class 1 and class 2 F1-scores
between majority voting and weighted ensemble labels can be
seen both in Resnet50 and Resnet101 as well.

To further evaluate the MaxViT’s performance, we can
compare the model’s accuracy to the annotator’s using the
weighted ensemble algorithm’s labels. The accuracy of
the annotators was 0.97, 0.90, 0.73, 0.70, 0.60 and 0.40.
MaxViT’s 0.80 accuracy outperforms 4 of the 6 annotators.
These results indicate that MaxViT has reached a perfor-
mance that is very close to human level on this dataset.

5. CONCLUSION

In this paper, we introduce an AI model that harbours the po-
tential to enrich the diagnostic process for endometriosis by
enhancing the quality of TVUS. The distinctive architecture
of our AI model effectively utilises a pre-trained multiaxis vi-
sion transformer in conjunction with annotations from diverse
healthcare professionals. This approach yields accurate eval-
uations of TVUS scan quality. With a prediction accuracy of
80.00% , our model shows potential to benefit non-specialist
sonographers, as it empowers them to consistently generate
high-quality TVUS scans. This work paves the way for fu-
ture research to the rapidly evolving research of AI-assisted
ultrasound technology.
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