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ABSTRACT Recent research highlights the potential of machine learning models to learn to complement
(L2C) human strengths; however, generalizing this capability to unseen users remains a significant challenge.
Existing L2C methods oversimplify interaction between human and AI by relying on a single, global user
model that neglects individual user variability, leading to suboptimal cooperative performance. Addressing
this, we introduce L2CU, a novel L2C framework for human-AI cooperative classification with unseen
users. Given sparse and noisy user annotations, L2CU identifies representative annotator profiles capturing
distinct labeling patterns. By matching unseen users to these profiles, L2CU leverages profile-specific
models to complement the user and achieve superior joint accuracy. We evaluate L2CU on datasets (CIFAR-
10N, CIFAR-10H, Fashion-MNIST-H, Chaoyang and AgNews), demonstrating its effectiveness as a model-
agnostic solution for improving human-AI cooperative classification.

INDEX TERMS Human-AI Cooperation, Learning To Complement

I. INTRODUCTION

HUMAN-AI cooperation aims to combine the strengths
of humans and AI to achieve superior performance

compared to either acting alone. Within this field, learning
to defer (L2D) and learning to complement (L2C) represent
distinct approaches. L2D focuses on AI abstention when
confidence is low, relying on human intervention for difficult
cases [1]–[3]. L2C, however, aims for a more synergistic
partnership, where both human and AI actively contribute
their complimentary strengths, leading to greater overall per-
formance [4], [5]. Both L2D and L2C are vital strategies
for effective human-AI cooperative tasks. L2D prioritizes
efficient use of human time by focusing human expertise
on instances where AI is uncertain, whereas L2C priorities
maximal joint accuracy through the human-AI cooperation.

A key challenge in deploying human-AI cooperative sys-
tems is ensuring its effective generalization to diverse skills
and behaviors of unseen users (i.e., drawn from the same
distribution as users in the training set but not included in
it). Recent advances in L2D begin to address this challenge.
For example, EA-L2D [6] employs a Bayesian approach for
expert-agnostic modeling and generalizes to unseen experts.
L2D-Pop [7] utilizes meta-learning to adapt to new experts.
In contrast, the challenge of complementing unseen users in
L2C remains largely under-explored (Figure 1). The task is
inherently more complex than L2D’s binary deferral because
L2C requires adapting a model to latent user characteristic
labeling patterns based on sparse and potentially incorrect
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FIGURE 1. Paradigms of Human-AI Cooperation with seen users in blue
and unseen users in orange. L2D defers decisions to humans, evolving to
handle both seen and unseen users. L2C complements human strengths,
and L2CU (Ours) advances L2C to complement unseen users.

labels, given that such sparsity and noise are inevitable in real-
world datasets.

To address this research gap, this paper introduces L2CU,
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a novel L2C framework for human-AI cooperative classifi-
cation, designed to achieve optimal performance with unseen
users (Figure 2). Given a sparse training dataset with noisy
labels, where training users only label subset of samples,
L2CU extracts representative annotator profiles, each captur-
ing a distinct noisy labeling pattern. These profiles are then
used to train AI cooperative model instances, each optimized
for a specific profile. To enable cooperation at test time, a
user profiling process matches a new user to a profile, and
the corresponding AI cooperative model is selected. This
profiling mechanism enables L2CU to generalize to unseen
users who were not included in training, and adapt to their
characteristic labeling patterns.

We thoroughly evaluate L2CU on both simulated and
real multi-rater settings across diverse modalities (image and
text) and domains (everyday objects, news classification, and
medical diagnosis), with CIFAR-10N, CIFAR-10H, Fashion-
MNIST-H, Chaoyang and AgNews datasets. We also intro-
duce a novel assessment metric, alteration rate, which quan-
tifies the extent to which the model’s predictions improve
upon or deviate from the original human labels. Our results
demonstrate that L2CU, a model-agnostic L2C framework,
generalizes effectively to unseen users, consistently outper-
forming both individual human annotators and leading L2D
and L2C methods across a range of classification tasks. Our
key contributions include:

• L2CU, a new learning-to-complement framework de-
signed to complement users unseen during training.

• L2CU handles sparse, multi-user settings and proposes
a label augmentation method to augment sparse training
data while preserving characteristic labeling patterns.

• L2CU achieves leading performance in human-AI co-
operative classification and introduces a novel alteration
rate metric to offer insights into the model’s impact on
human labels.

L2CU’smodel-agnostic design, ability to train using sparse
noisy labels (without accessing ground truth), and generaliza-
tion to unseen users make it a significant contribution to the
field of human-AI cooperative classification

II. RELATED WORK
The uncertainties of automation often demand human in-
volvement, leading to new human-AI cooperation paradigms
[8]. Learning-to-Defer (L2D) methods let AI models handle
confident cases while deferring uncertain ones to humans by
optimizing a utility function that balances model accuracy,
preference of a human decision, and deferral costs [1]–[3].
For instance, [9] used AI model ensemble to flag high-risk
patients for human review. [10] refines classifiers and use
post-hoc rejectors to identify when to defer. [2], [11], [12]
optimize surrogate loss functions for deferral. [13] optimizes
work distribution for deferral. However, these assume clean
labels or defer only to seen users. In contrast, we propose a
learning-to-complement approach that removes the need for
clean labels and supports cooperation with unseen users.

Learning-to-Defer to Unseen Users (L2DU) aims to defer
to test users different from the training users. EA-L2D [6]
proposes a Bayesian framework to model expert behavior
without expert-specific training data. With this prior knowl-
edge about experts, they generalize to unseen experts. L2D-
Pop [7] uses a small context set to characterize an expert’s
decision patterns and employs meta-learning to refine defer-
ral policies dynamically. However, it assumes each training
user labels all training samples—uncommon in multi-rater
settings. In contrast, being a L2C method, L2CU addresses
realistic conditions where each training user labels only a
subset of the data.
Learning-to-Complement (L2C) is less explored than L2D.

L2C leverages the strengths of both humans and AI to im-
prove decision-making. [4] considers uncertainty from both
sides to improve decision, [5] uses Bayesian modeling for
human-AI complementary. LECOMH [14] estimates human-
AI consensus, then trains a selection module to minimize
error and collaboration cost. LECODU [15] further decides
when to collaborate or defer, and how many experts to in-
volve. However, unlike those methods that complement the
same users appearing in training, L2CU enables complement-
ing unseen users.
While adapting to users is studied in recommender sys-

tems, the absence of user-item preference data and L2C’s
distinct goal of complementing user biases to improve joint
accuracy—unlike predicting preferences—render such meth-
ods inapplicable, leaving user adaptation in L2C underex-
plored [16], [17]. Available L2C work model users globally
using confusion matrices [18] or behavior models [19], but
these overlook individual biases and require extensive human
labels. In contrast, L2CU identifies distinct annotator profiles
and adapts without requiring extra labels to train behavior
models. Appendix F extends the related work.

III. METHODOLOGY
A. PROBLEM FORMULATION
We consider a classification problem with C classes, where
each data sample has multiple, potentially noisy labels pro-
vided by different annotators. Our training dataset, denoted
as D̃ = {(xi, {ỹi,j}j∈A)}Ni=1, consists of N data samples.
Each sample xi ∈ X has a set of noisy labels {ỹi,j}j∈A,
where ỹi,j ∈ {0, 1, ...,C − 1} represents the label provided
by annotator j for sample i. The setA represents the set of all
annotators. Crucially, each annotator labels only a subset of
the samples. We assume each sample xi has a latent, clean
label yi, and that annotator noise is class-dependent [20].
When clean labels are unavailable, we employ Crowdlab [21]
to estimate consensus labels, ȳi, for each sample, resulting in
a consensus-labeled dataset D̄ = {(xi, ȳi)}Ni=1. Appendix A
provides more details on consensus estimation.

B. TRAINING OF HUMAN-AI COOPERATIVE MODEL
To enable complementing unseen users given sparse, noisy
multi-rater data, L2CU’s training (Fig.2) proceeds as follows:
First, a set of representative annotator profiles are identified,
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FIGURE 2. Three step L2CU framework. 1) During training, from a sparse multi-rater dataset, unique annotator profiles are identified (1, ..., K ). Then, for
each annotator profile, noisy label augmentation is performed and a AI cooperative model is trained. 2) During user profiling, a test user annotates a
validation set and based on validation labels, a profile is matched by OVA SVM, entry condition is evaluated, and respective AI cooperative model is
selected. 3) At inference, the test user is paired with the corresponding model from the selected profile for cooperative classification.

each capturing distinct noisy labeling patterns among users.
Next, noisy labels are augmented for each profile, to mitigate
data sparsity. Finally, AI cooperative model instances are
trained for each profile using the augmented data, enabling
cooperation and effective generalization to unseen users who
can be matched to a profile. We explain each step in more
details below.

1) Identifying Annotator Profiles
In multi-rater datasets, annotators often exhibit similar la-
beling error patterns, reflecting individual biases or areas
of confusion [20], [22]. We define these characteristic error
patterns as annotator profiles. For example, on CIFAR-10, an
annotator profile might be characterized by frequent misclas-
sifications of horses as deer, birds as planes, and trucks as
automobiles [22].

To identify representative annotator profiles, we first con-
struct a fixed-length label vector sj for each annotator j ∈ A.
This vector represents the annotator’s characteristic labeling
pattern across all C classes. The construction of sj proceeds
as follows: 1) For each class c ∈ {1, ...,C}, we gather all
noisy labels ỹi,j provided by annotator j for samples with
consensus label c. This forms a set of labels for each class:
S(c)
j = {ỹi,j|(xi, ỹi,j) ∈ D̃}. 2) From each set S(c)

j , we
randomly select L labels. If an annotator has provided fewer
than L labels for a given class, that annotator is excluded from
further analysis. The value of L is chosen to balance profile
representation with the inclusion of as many annotators as
possible; in our experiments, L is set to 20. 3) The selected
noisy labels are then concatenated across allC classes to form
the label vector sj where each l

(c)
i is a noisy label ỹi,j selected

from S(c)
j .

sj = [l(1)1 , ..., l(1)L︸ ︷︷ ︸
Class 1

, l(2)1 , ..., l(2)L︸ ︷︷ ︸
Class 2

, ..., l(C)1 , ..., l(C)L︸ ︷︷ ︸
Class C

] (1)

This process yields a set of label vectors, L = {sj}j∈A.
Although the specific labels within each sj will vary, the con-
sistent class ordering allows for direct comparison of labeling
patterns across annotators.
To identify distinct annotator profiles, we cluster the label

vectors in L using Fuzzy K-Means, chosen for its robustness
to noise in the label vectors [23], [24]. The number of clusters,
K , is determined using the silhouette score (see Appendix B),
which provides a measure of cluster cohesion and separation.
Each annotator is then assigned to the profile (cluster) to
which their label vector has the highest membership score.

2) Noisy-label Augmentation
Because each annotator labels only a subset of the data, and
annotators are grouped into profiles, the original training
set D̃ is now divided into profile-specific subsets {D̃k}Kk=1

(where D̃k contains labels from users in profile k) resulting
in sparse data for training each profile-specific model. To
address this data sparsity while preserving profile-specific
noise patterns, we perform noisy label augmentation on each
profile, enabling the model to learn these patterns during
training.
This augmentation process leverages the characteristic

noisy labeling patterns captured by each profile. Specifically,
for each profile k , we estimate a label transition matrixTk ∈
[0, 1]C×C . This matrix quantifies the probability of annotators
within profile k assigning a noisy label n to a sample having
consensus label c, effectively capturing the profile specific
biases. The transition matrix is estimated as,

Tk(c, n) =
1

|S(c)
k |

∑
ỹi∈S(c)

k

I[ỹi = n] (2)

where S(c)
k =

⋃
j∈Ak

S(c)
j represents the set of noisy labels

provided by annotators in profile k (Ak ⊂ A) for samples
with consensus label c, and I[·] is the indicator function.
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New noisy labels are then generated for each profile by
sampling from this profile-specific transition matrixTk . This
augmentation process ensures sufficient training data for each
profile-specific model while preserving the characteristic
noise patterns of that profile, allowing the model to learn to
effectively complement the users within that profile.

Each element Tk(c, n) of the transition matrix (Eq. 2)
represents the probability, P(Ỹ = n|Ȳ = c,R = k), that
an annotator in profile k (R = k) assigns the noisy label
Ỹ = n to a sample with consensus label Ȳ = c. To augment
the data for profile k , we proceed as follows: For each data
sample xi in the profile’s subset D̃k , we retrieve its consensus
label c from D̄. Using the c-th row of the transition matrix
Tk , which represents the categorical distribution over noisy
labels for class c, we sample G new noisy labels, {ŷi,g}Gg=1.
This results in an augmented training set for profile k: D̂k =
{(xi, {ŷi,g}Gg=1)}Ni=1.

3) Training Human-AI Cooperative Model
To effectively complement unseen users by leveraging
learned annotator profiles and their associated augmented
noisy labels, we introduce the AI cooperative model archi-
tecture (final step of Training, Fig. 2). The model consists of
three components. 1) A base model, fψk : X → RC , extracts
features from the input data, transforming it into a logit vector.
2) A human label encoder, hϕk : Y → RC , models the profile-
specific noisy labeling patterns. Finally, 3) a decision model,
dζk : RC × RC → ∆C−1 learns the joint noise distribution
of fψk and hϕk and produces a categorical distribution across
classes where we use the one with highest probability as the
final prediction. The whole model mθk : X × Y → ∆C−1 is
defined as:

mθk (x, ŷ) = dζk (fψk (x)⊕ hϕk (ŷ)), (3)

where θk = {ψk , ϕk , ζk}, and ⊕ represents the concatenation
operator. Note that, for each profile k , we train a single mθk
using profile’s D̂k . The base model fψk (.) could use any
architecture. Similarly, hϕk (.) and dζk (.) can be of different
architectures; we configured them as a two-layer and three-
layer multi-layer perceptron, respectively, with ReLU activa-
tions. The model in eq.3 is trained with:

{θ∗k }Kk=1 =arg min
{θk}Kk=1

1

K × |D̂k | × G
×

K∑
k=1

∑
(xi,{ŷi,g}Gg=1)∈D̂k

ℓ (ȳi,mθk (xi, ŷi,g))+

λ× ℓ
(
ŷi,g, (Tk)

⊤ × mθk (xi, ŷi,g)
)
,

(4)

where ȳi is the consensus label from D̄, ℓ(.) is the cross-
entropy loss, λ ∈ [0,∞] is a hyper-parameter, and the second
loss term is motivated by the forward correction procedure
proposed by [25], transforming the clean label prediction
from mθk (.) into the noisy ones in D̂k .

C. USER PROFILING AND INFERENCE
At test time, an unseen user undergoes a user profiling process
(User Profiling phase of Fig. 2) to determine the most match-
ing AI cooperative model instance, mθk , for classification.
This process consists of two key steps: 1) Assigning the user
to one of the K annotator profiles identified during training.
2) Evaluating an entry condition to determine whether the
cooperative model instance mθk (·) from the assigned profile
should be used.
In the first step, the test user annotates a small validation set

V = {(xi,yi)}M×C
i=1 . This validation set contains M samples

from each C class, does not overlap with the training or
testing sets, and has clean labels. A key advantage of L2CU
is that it only needs M × C samples to adapt to unseen
users—unlike prior methods that require extensive expert
annotations to train additional behavioral models. From the
obtained labels from the test user, we construct a label vector
having the same format as Eq. 1 and classify the user into a
profile identified during training phase using a one-versus-all
(OVA) support vector machine (SVM) classifier. OVA SVM
takes the test user’s label vector and outputs a categorical
distribution across profiles where we choose the one with
highest prediction as the matching profile. This empirically
leads to better performance compared to soft assignment (see
Ablation Sec.VI).
The OVA SVM classifier is trained on label vectors col-

lected from users belong to identified profiles during the
training. Specifically, user labels forM samples from each of
the C classes (using consensus labels to determine the class),
are randomly collected, formatted as in (Eq. 1), labeled with
their corresponding profile, and used for training. Given their
strong performance in high dimensions with limited data,
SVMs are well-suited for this task.
In the second step, building on [5], the entry condition

compares the accuracy of the base model fψk (.) and the
testing user on the validation set V . The mθk (.) from the
predicted profile is paired with the test user if the base model
outperforms the user; else, the user is rejected. Once the
test user is paired with a model, they perform cooperative
classification (Inference of Fig.2).mθk (.) is evaluated on a test
set T = {(xi,yi)} having clean labels that does not overlap
with training or validation sets.

D. MEASURES FOR H-AI COOPERATIVE CLASSIFICATION
As part of cooperative classification, L2CU alters the user
labels to improve accuracy. These alterations can be positive
(correcting an incorrect user label) or negative (changing a
correct user label to an incorrect one). To capture this, we
introduce positive and negative alteration measures,

Positive
Alteration
A+

=
1

|A|

|A|∑
j=1

|Mc
j|

|Ij|

Negative
Alteration
A−

=
1

|A|

|A|∑
j=1

|Me
j|

|Rj|
(5)

where Ij = {i|i ∈ T and ỹi,j ̸= yi} represents the set of
samples incorrectly labeled by the jth user, Mc

j = {i|i ∈
Ij and ÿi,j = yi} represents the set of samples labeled in-
correctly by user j but corrected by the model, Rj = {i|i ∈
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T and ỹi,j = yi} represents the set of samples correctly
labeled by the jth user, Me

j = {i|i ∈ Rj and ÿi,j ̸= yi}
represents the set of samples labeled correctly by user j but
later mislabeled by the model. Note that yi represents the
test set clean label and ÿi,j = Scalar(mθk (xi, ỹi,j)), with the
function Scalar returning a scalar label representing the class
with the largest prediction from the model mθk (.). In eq.5,
A+ measures the proportion of a user’s incorrect labels that
the model successfully corrected. In contrast, A−, in eq.5,
measures the proportion of a user’s correct labels that were
incorrectly altered by the model. In edge cases where the
annotator is perfect or always wrong, A+ and A− becomes
zero respectively, for division by zero.

We also assess original accuracy (before labels alterations)
and post-alteration accuracy (after AI cooperative model al-
ters labels). These are computed per user and averaged across
all users to determine overall improvement. An effective
model should have highA+, high post-alteration accuracy and
low A−.

IV. EXPERIMENT SETUP
A. DATASETS
CIFAR-10 [26] includes 50000 training, 200 validation, and
9800 testing images, across 10 classes. CIFAR-10N [27] ex-
tends CIFAR-10’s training set with labels collected from 747
annotators, with each image having three independent labels.
CIFAR-10H [28] expands CIFAR-10’s testing set with labels
from 2571 annotators, resulting in an average of 51 labels per
image. Fashion-MNIST-H [29] extends Fashion-MNIST’s
[30] testing set with labels from 885 annotators, averaging
66 labels per image. We use this testing set as the training set,
with 200 images from the original training set allocated for
validation and the remainder for testing. Lastly, Chaoyang
[31] is a four-class pathological dataset with 4021 training, 80
validation, and 2059 testing images, each having three expert
labels in the training set. Unless stated otherwise, above
validation sets are composed of randomly selected subsets of
samples from the respective original test sets, with selected
samples excluded from testing.

B. SETUP ON DATASETS WITH SIMULATED ANNOTATORS
On CIFAR-10, a pairwise flipping experiment is conducted
where 8 out of 10 classes have clean labels, but in two
classes, 60% of samples have labels flipped. Three user
profiles are simulated, one that flips labels between classes
airplane↔bird, another profile that flips horse↔deer, and the
other flips truck↔automobile. For each profile, five training
and five testing users are simulated, resulting in 15 unique
users in each set. Labels from training users combined with
training samples, form D̃ from which we identify K profiles,
train mθk in eq. 3 for each k with a ResNet-18 [32] as fψk (.),
and train OVA SVM.

C. SETUP ON DATASETS WITH REAL ANNOTATORS
With CIFAR-10N, we conduct two experiments. In the first
experiment, the labels from 747 annotators form D̃. Of these,

TABLE 1. Accuracy of L2CU vs. related methods. Unlike others, L2CU
outperforms without training ground truths and by complementing
unseen users. (Missing values due to lack of sparse multi-rater support.)

Method CIFAR CIFAR CIFAR F-MNI- Chao-
-10 -10N -10H ST-H yang

Learning To Defer
MOE [1] - 0.831 0.812 0.600 0.583
CC [9] - 0.970 0.971 0.801 0.863
CE [11] - 0.949 0.967 0.729 0.706
DifT [10] - 0.940 0.944 0.704 0.765
OVA [12] - 0.959 0.974 0.794 0.845
WSP [2] - 0.948 0.976 0.775 0.872

Learning to Defer to Unseen Users
L2D-Pop [7] 0.947 - - - 0.970
EA-L2D [6] 0.820 - - - -

Learning To Complement
LECOMH [14] - - 0.988 - 0.988
LECODU [15] 0.951 - 0.989 - 0.990

L2CU (Ours) 0.968 0.989 0.993 0.878 0.991
±0.002 ±0.001 ±0.002 ±0.008 ±0.004

159 annotators who labelled at least 20 images per class
(L = 20) are selected, split into 79 training users and 80
testing users. The training users’ labels are used to identify
K profiles where K is chosen from silhouette score, train
mθk for each profile, and train the OVA SVM. During testing,
noisy-label transition matrices are estimated using annotator
labels and consensus labels for each test user, resulting in
80 noisy test sets. In the second CIFAR-10N experiment,
users in CIFAR-10H are used as a testing set. Noise transition
matrices are estimated and used to simulate noisy annotations
for each testing user, resulting in unique noisy test sets for all
2571 users. For Fashion-MNIST-H, labels from 885 annota-
tors form D̃. 366 annotators who labeled at least 20 images
per class are selected, split into 183 training and 183 testing
sets. Training users are used to identify K profiles, train mθk ,
and train an OVA SVM. During testing noisy-label transition
matrices are estimated for each testing user and produced
183 noisy testing sets. Chaoyang dataset has three annotators
per image, forming D̃ which is used to build K profiles,
trainmθk , and train an OVA SVM. During testing, noisy-label
transition matrices are estimated, resulting in three noisy test
users.More details on experiment setup, data preparation, and
implementation are in Appendix C.

D. TRAINING DETAILS

Data augmentation policies in [33], [34] were adopted for
CIFAR-10 and Fashion-MNIST respectively while Chaoyang
is limited to random resized crops of 224 × 224. Training
runs for 500 epochs with early stopping after 20 unimproved
epochs. As found empirically (see Ablation Sec.VI), we keep
λ = 0.1 that yields optimal performance.We use Imagenet1K
[35] pre-trained backbone models as base model. Adam and
NAdam optimize fψk (.) and mθk (.) respectively, in PyTorch
on a NVIDIA RTX 4090.
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TABLE 2. Number of users who improved (I), maintained (M), or did not improve (NI) out
of the test users profiled and satisfied entry condition. Includes original vs.
post-alteration accuracy with positive (A+) and negative (A−) alterations along with
chosen K from silhouette score.

Dataset
K (Silhou-
ette score)

Test
Users I M NI

Original
Accuracy

Post. Alt.
Accuracy A+ A−

With simulated annotators
CIFAR-10 3 (0.34) 15 15 0 0 0.880 0.968 0.953 0.09

With real annotators
CIFAR-10N 2 (0.01) 80 80 0 0 0.836 0.989 0.954 0.004
CIFAR-10H 2 (0.01) 2022 2022 0 0 0.940 0.993 0.939 0.004
F-MNIST-H 2 (0.09) 182 182 0 0 0.662 0.878 0.758 0.073
Chaoyang 3 (0.99) 2 2 0 0 0.858 0.988 0.968 0.045

Human Mislabelled Adenoma as Normal and positively altered

Human Mislabelled Deer as a Horse and positively altered

Human Mislabelled Coat as a Pullover and positively altered

FIGURE 3. Positive alterations made by the L2CU on
CIFAR-10N, Fashion-MNIST-H and Chaoyang experiments (top
to bottom).

V. RESULTS
Results are reported for unseen test users who were profiled
and met the entry condition. Table 1 compares L2CU with
competing methods and Table 2 presents the post-alteration
accuracy relative to the users’ original accuracy, with posi-
tive and negative alterations from eq.5 for K selected from
silhouette score and Fig.3 with sample positive alterations.

A. COMPARISON WITH RELATED METHODS
Table 1 compares L2CU with competing methods from
L2D, L2D with unseen users, and L2C on both simu-
lated (CIFAR-10) and real annotator datasets (CIFAR-10N,
CIFAR-10H, Fashion-MNIST-H, Chaoyang). For a fair com-
parison, Chaoyang results are reported for all users without
applying the entry condition. We prioritize comparisons with
real annotator datasets and use simulations only when neces-
sary. Some values are missing due to requiring the same users
in training and testing sets, not supporting multi-rater settings
with sparse labels (where we resort to simulation data), or un-
available source code (where we report values from original
work). Unlike literature methods trained with ground truth
(except LECODU), our models are trained without it (with
consensus) yet still outperform them. Low standard deviation
indicate steady improvements across users and datasets.

B. RESULTS OF DATASETS WITH SIMULATED ANNOTATORS
The first row of Table 2 show the number of testing users who
improved (I), maintained (M), or did not improved (NI) with
L2CU in the CIFAR-10 simulation. The comparison between
original and post-alteration accuracy reveals that all 15 testing
users improved, with post-alteration accuracy exceeding the
original. The last two columns show a large A+ contrasted
with a low A−, highlighting a high proportion of positive
alterations.

C. RESULTS OF DATASETS WITH REAL ANNOTATORS
Table 2 shows that all test users improved their post-alteration
accuracy with L2CU by approximately 18%, 5%, 32%, and
15% for CIFAR-10N, CIFAR-10H, Fashion-MNIST-H, and
Chaoyang, respectively along with a high positive alteration
rate compared to negative alterations. Interestingly, real anno-
tator datasets (except Chaoyang) have low silhouette scores
likely because they include many annotators, each introduc-

ing subtle noise patterns, making profiles harder to distin-
guish. Being a real annotator dataset, with fewer annotators,
Chaoyang has the highest score. However, L2CU manages to
improve users in such challenging conditions.

D. ADAPTING TO THE TEXT DOMAIN
Table 3 evaluates L2CU in the text domain using AgNews
[36] dataset following a simulation setup similar to CIFAR-
10. All 15 test users improved post-alteration accuracy over
original and a high positive alteration proportion, promising
that adapting to the text domain is a possibility. See appendix
C for experiment setup.

TABLE 3. L2CU performance on Text domain with Agnews

K (Silhouette
score)

Test
Users I M NI

Original
Accuracy

Post. Alt.
Accuracy A+ A−

3 (0.44) 15 15 0 0 0.700 0.980 0.975 0.016

E. ROLE OF ANNOTATOR PROFILES
To evaluate the impact of annotator profiles on unseen user
performance, we compare results with and without profiles
(Tables 2 and 4). The absence of profiles leads to a higher
number of users whose performance is not improved (NI),
lower post alteration accuracy, and lower positive label al-
terations across all datasets compared to with profiles. This
demonstrates that profiles are crucial for improving the per-
formance of unseen users.
To validate the silhouette score’s selection of the optimal

number of clusters (K ), we visualize the profiles identified
in the CIFAR-10 simulation experiment with K = 3 (Fig. 4,
Appendix E). The estimated noise matrices for these profiles
closely resemble the ground-truth noise patterns used in the
simulation: one profile exhibits noise between airplane and
bird, another between horse and deer, and a third between

TABLE 4. Results without annotator profiles

Dataset I M NI
Original
Accuracy

Post. Alt.
Accuracy A+ A−

CIFAR-10 5 0 10 0.880 0.835 0.815 0.261
CIFAR-10N 69 0 11 0.836 0.918 0.893 0.006
CIFAR-10H 1949 0 73 0.940 0.911 0.882 0.006
F-MNIST-H 166 2 14 0.662 0.854 0.635 0.181
Chaoyang 1 0 1 0.858 0.915 0.704 0.065
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truck and automobile. This confirms both the effectiveness
of the silhouette score in determining K and the ability of
clustering approach to identify distinct user noise patterns.

F. DISTRIBUTION OF JOINT DECISIONS
Table 5 shows decision distributions for unseen test users
in real annotator experiments, comparing humans, the base
model, and their joint cooperation. Each decision—by the
human, base model fψk (.), or cooperation mθk (.)—is marked
as correct (✓) if it matches the test set target label or incorrect
(✗) otherwise.

TABLE 5. Proportion that each combination of Human, AI, or Cooperation
is correct ✓or incorrect ✗; Columns sum to 1.

Human AI
fψk (.)

Coopera-
tion mθk (.)

CIFAR
-10N %

CIFAR
-10H %

F-MNI-
ST-H %

Chaoy-
ang %

✗ ✓ ✓ 05.15 05.59 04.47 03.35
✓ ✗ ✓ 00.65 02.26 15.05 01.82
✓ ✓ ✓ 93.79 91.35 72.13 92.16
✗ ✗ ✓ 00.05 00.05 04.29 00.13
✗ ✓ ✗ 00.13 00.19 00.33 00.49
✓ ✗ ✗ 00.11 00.39 01.38 01.29
✓ ✓ ✗ 00.00 00.00 00.20 00.00
✗ ✗ ✗ 00.12 00.17 02.17 00.76

According to Table 5, themajority of correct joint decisions
and the lowest proportion of incorrect joint decisions occurs
when both human and AI predictions are correct, as expected
from a cooperation. In addition, joint decisions tend to be cor-
rect when at least one party is correct, showing the effective-
ness of cooperation. Interestingly, there are cases where the
cooperative decision is correct when both individual parties
are wrong which we discuss this in Sec.VII.

VI. ABLATION STUDIES
(Ablation 1) Performance vs. Model Components: Table
6 evaluates the importance of Human Label Encoder hϕ and
Decision Model dζ for overall performance by turning each
off separately and together with CIFAR-10N. By changing
the eq. 3, when hϕ is off,mθk (x, ŷ) = dζk (fψk (x)⊕ ŷ). When
dζ(.) is off, mθk (x, ŷ) = fψk (x)⊕hϕk (ŷ). When both are off,
mθk (x, ŷ) = fψk (x)⊕ ŷ.

Accuracy becomes lowest with both components off and
highest when both are active. Using only one is suboptimal,
showing the importance of added components for unseen
users. (Ablation 2) Performance vs. G: Table 7 extends
the CIFAR-10N experiment to study post-alteration accuracy
for augmentation times G ∈ {0, 1, 3, 5}. Accuracy jumps
significantly from G = 0 to G = 1 showing the effect of
noisy label augmentation, with steady gains for G > 1. (Ab-
lation 3) Performance vs. Noise Rate: Table 8 expands the
CIFAR-10 simulation (Section IV) to study asymmetric noise
rates (40%–90%). Our approach remains robust, maintaining
accuracy above 86% across cases. (Ablation 4) Evaluating
Backbone Models: We extend the CIFAR-10N experiment
with DenseNet-121, ResNet-50, and ViT/B-16 as base model.
Tab.9 shows consistent performance across all models, being
agnostic to the backbone.

We perform four additional ablations in which we keep the
findings here and the results in the Appendix D. (Ablation
5) Performance vs. K : Furthering role of clusters in Sec.
V-E, we study the effect of having a K , different from the
silhouette optimal. Table 10 extends CIFAR-10N experiment
to K ∈ {1, 2, 3, 6, 10} showing that post alteration accuracy
improves from K = 1 (no clusters) to K = 2 (optimal
for CIFAR-10N), but drops for K > 2, likely due to over-
adaptation, as higher K reduces training users per profile,
making the model less generalizable. (Ablation 6) Perfor-
mance vs. λ: We study the impact of λ in the loss func-
tion eq.4 on post-alteration accuracy using CIFAR-10N with
ResNet-50, DenseNet-121, and Vit/B-16. Experiments with
λ ∈ {0, 0.01, 0.1, 1, 10} (Table 11) show that the highest
accuracy is centered aroundλ = 0.1 across all models. (Abla-
tion 7) Performance vs. SVMProfiling Error:To assess the
impact of SVM profiling errors, we randomly assigned test
users a profile different from the one predicted by the SVM.
Table 12 shows the expected surge in not improved (NI) users
and the drop in post alteration accuracy. This performance
drop contrasts with Table 1, where correct SVM assignments
yield higher post-alteration accuracy. (Ablation 8) Perfor-
mance vs. Profile Assignment Method: Hard assignment
uses the prediction from the most matching profile model
mθk at inference, while soft assignment averages predictions
from all mθk∈{1,...,K} , weighted by OVA SVM’s profile proba-
bilities. Table 13 shows that hard assignment performs better
than soft profile assignment across all datasets. All ablation
studies adopt the setup in Section IV and use the K selected
by silhouette score in Table 2.

VII. DISCUSSION
A. CAN COOPERATION CORRECT JOINT MISTAKES?
Table 5 reveals an interesting phenomenon: the coopera-
tive decision can be correct even when both human and
AI are wrong. This happens because the decision model
dζk (.) learns to exploit the joint label noise distribution of
the base model and human to correct their combined er-
rors. A necessary condition for this is P(C |¬A,¬B) > 0,
where A, B and C represent events that correct predictions
from the AI, human, and human-AI cooperation, respec-
tively. Given that, base model and human can make mis-
takes and assuming events A and B are independent and
independent given C , we trivially obtain: P(C |¬A,¬B) =
P(¬A,¬B|C).P(C)

P(¬A,¬B) = (1−P(A|C)).(1−P(B|C)).P(C)
(1−P(A))(1−P(B)) > 0 because

0 < P(B|C),P(A|C),P(A),P(B),P(C) < 1.

B. WHEN WOULD COOPERATION REDUCE
PERFORMANCE?
Although generally improves joint performance, L2CU may
degrade the performance of experts with near-perfect accu-
racy. We observe this with Chaoyang dataset having one
expert with 99.6% original accuracy and 99.3% post alt.
accuracy. This aligns with theoretical findings in [5] which
demonstrates that an L2C system’s improvement is contin-
gent upon the model outperforming its human counterpart. To
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TABLE 6. Performance vs.
importance of components.
Checkmarks indicate (not-)having
component-–Ablation 1

hϕ(.) dζ(.)
Post Al-
t. Acc A+ A−

✗ ✗ 0.705 0.007 0.159
✓ ✗ 0.774 0.043 0.083
✗ ✓ 0.861 0.833 0.134
✓ ✓ 0.989 0.954 0.004

TABLE 7. Performance vs. noisy
label augmentation
hyper-parameter G -–Ablation 2

G Post Alt.
Acc. A+ A−

0 0.615 0.411 0.302
1 0.980 0.953 0.004
3 0.983 0.954 0.004
5 0.989 0.952 0.004

TABLE 8. Performance vs. noise
rate -–Ablation 3

Noise
Rate

Post Alt.
Acc. A+ A−

40% 0.992 0.973 0.001
60% 0.968 0.953 0.088
80% 0.879 0.944 0.134
90% 0.868 0.875 0.195

TABLE 9. Performance vs. different
backbones as base model fψk (.)
-–Ablation 4

Backbone
Model

Post Alt.
Acc. A+ A−

ResNet-50 0.968 0.862 0.013
DenseNet-
121 0.969 0.854 0.011

Vit/B-16 0.989 0.954 0.004

mitigate degrades, we introduced an entry condition in our
profiling process (Sec. III-C) that compares the base model
accuracy on V , to that of the test user.

C. FUTURE DIRECTIONS
First, extending L2CU to a distribution-agnostic user setting
would be a promising direction that broadens its application.
Second, modeling temporal dynamics would enable comple-
menting the changing user behavior over time. Third, using
meta-learning to adapt AI cooperative models to profiles
would lower the computational overhead. Finally, developing
a few-shot user profiling would reduce the annotation require-
ments, especially for datasets with many classes.

VIII. CONCLUSION
This paper introduced L2CU, a novel learning to comple-
ment framework that enables complementing unseen users in
human-AI cooperative classification. Extensive evaluations
across datasets (CIFAR-10N, CIFAR-10H, Fashion-MNIST-
H, Chaoyang, and AgNews) demonstrate L2CU’s leading
performance without needing ground truth. Furthermore, the
proposed label augmentation method tackles data sparsity
while preserving annotator bias, and the alteration rate metric
offers insights into the model’s impact on human labels.
With the model-agnostic design and ability to leverage noisy,
sparse multi-user data without access to ground truth, L2CU
offers a significant step toward human-AI cooperative classi-
fication systems.

APPENDIX A
CONSENSUS LABEL ESTIMATION
Many multi-rater input datasets lack ground truth labels. To
address this, L2CU is built to function effectively without
relying on them. During training, we use Crowdlab [21] to
estimate a consensus label ȳi, which approximates the true
clean label yi. [21] works in two steps. In the first step, it
estimates a consensus bymajority vote ȳ′

i per training sample.
In the second step, it trains a classifier using the initial consen-
sus and obtains predicted class probabilities for each training
example. Thereafter, these predicted probabilities along with
the original annotations from the raters are used to estimate a
better consensus, creating the following ensemble,

ȳi = wγ × fγ(xi) +w1 × ỹi,1 + ...+w|A| × ỹi,|A|, (6)

where fγ : X → ∆C−1 is a classifier trained with the majority
vote label ȳ′

i to output a categorical distribution for C classes,

and the weights wγ ,w1, ...,w|A| are assigned according to
an estimate of how trustworthy the model is, compared to
each individual annotator. The outcome of Crowdlab is a
consensus labeled training set denoted by D̄ = {(xi, ȳi)}Ni=1.
Note that the consensus label is necessary only when the
clean label yi is latent. If such clean label is observed, then
Crowdlab is no longer needed, and L2CU can be trained with
D = {(xi,yi)}Ni=1.

APPENDIX B
DECIDING THE OPTIMAL NUMBER OF PROFILES
We determine the optimal number of profiles K with the
silhouette score defined by,

Sk =
1

|A|
∑
j∈A

b(sj)− a(sj)
max{a(sj), b(sj)}

, (7)

where a(sj) denotes the sample’s intra-profile distance (i.e.,
the average L2 distance to all other points in the same profile),
b(sj) represents the inter-profile distance (i.e., the lowest
average L2 distance to all points in any other profile). The
mean silhouette score for K profiles is defined by S(K ) =
1
K

∑K
k=1 Sk . The optimal number of profiles for the dataset is

identified by the K that yields the highest silhouette score.

APPENDIX C
EXPERIMENTAL SETUP
A. SETUP FOR DATASETS WITH REAL ANNOTATORS
When training with CIFAR-10N, we present two experi-
ments. For the first experiment, the labels from 747 annotators
form D̃. Out of them, 159 were identified for having anno-
tated at least 20 images per class, and they were split in half,
taking 79 as training users and 80 as testing users. The training
users’ labels are used to build theK profiles and train the OVA
SVM classifier, whereK is automatically chosen based on the
silhouette score in eq. 7. During testing, a testing user’s noisy-
label transition matrix is estimated using the test annotator’s
labels and consensus labels. This matrix is used to simulate
noisy annotations from that testing user. Therefore, 80 noisy
test sets are produced, with each representing the biases that
user possesses. The model for each profile k , denoted by
mθk (.), uses ViT-Base-16 [37] as the fψk (.).
For the second CIFAR-10N experiment, we use CIFAR-

10H as the testing set, where the labels from testing users
were used without any modification for user profiling. The
same labels were used to estimate a noise transition matrix
and simulate their own test set. For all 2571 users, their own
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TABLE 10. Performance vs. number of profiles K on CIFAR-10N
-–Ablation 5

K Post Alt.
Accuracy. A+ A−

K=1 0.918 0.893 0.006
K=2 0.989 0.954 0.004
K=3 0.988 0.954 0.004
K=6 0.986 0.944 0.004
K=10 0.972 0.914 0.004

TABLE 11. Performance vs. λ of the loss in eq.4 (with CIFAR-10N)
-–Ablation 6

Backbone
model λ = 0 λ = 0.01 λ = 0.1 λ = 1 λ = 10

ResNet-50 0.929 0.944 0.968 0.939 0.929
DenseNet-121 0.936 0.950 0.969 0.937 0.931

ViT-B/16 0.982 0.982 0.989 0.976 0.969

TABLE 12. Performance vs. SVM profiling error. -–Ablation 7

Dataset
Not Improved
Users (NI)

Post Alt.
Accuracy

CIFAR-10 11 0.82
CIFAR-10N 29 0.92
CIFAR-10H 181 0.90
F-MNIST-H 71 0.84
Chaoyang All 0.89

TABLE 13. Performance vs. profile assignment method. -–Ablation 8

Profile Assig-
nment Method

CIFAR
-10N

CIFAR
-10H

F-MNI-
ST-H

Chaoy-
ang

Soft 0.982 0.989 0.866 0.945
Hard 0.989 0.993 0.878 0.988

test test was simulated that possess own biases. The models
trained for CIFAR-10N were used for this experiment.

For the Fashion-MNIST-H experiment, the labels from all
885 annotators are taken to form the D̃. Then, 366 out of 885
users are chosen since they have annotated at least 20 images
per class and are split in half to have 183 users for training
and 183 for testing. The training users’ labels are used to build
the K profiles and train the OVA SVM classifier, where K is
automatically chosen based on the silhouette score in eq.7.
During testing, the testing user’s noisy-label transition matrix
is estimated using the annotator’s labels and consensus labels.
This matrix is used to simulate test annotations from that
testing user. Therefore, 183 noisy testing sets are produced,
with each representing the biases that each user possesses.
The model for each profile k , represented by mθk (.) uses
DenseNet-121 [38] for fψk (.).

Chaoyang has three annotators per image, which form the
D̃. Training users are used to make K profiles, and train
an OVA SVM, where K is automatically chosen based on
the silhouette score in eq.7. For each profile k , a model
mθk (.) is trained with a ViT-Large-16 as the backbone for
fψk (.). During testing, user’s noisy-label transition matrix is
estimated using the annotator’s labels and consensus labels.
This matrix is used to simulate noisy test annotations from
that user, resulting three noisy test sets.

Our experiment with CIFAR-10N and CIFAR-10H, with
human labels for CIFAR-10’s training and testing sets respec-
tively, offer a more realistic setup, better reflecting real-world
conditions. But, while ourmethod preserves annotators’ noisy
label patterns, it’s important to note that Fashion-MNIST-H
and Chaoyang test sets are simulated and might not com-
pletely mimic real annotator inputs.

In our CIFAR experiments, we adopted the data augmen-
tation policy introduced by [33]. Also, for Fashion-MNIST,
alongside random horizontal and vertical flips, we integrated
auto augmentations as proposed by [34]. For the Chaoyang
dataset, data augmentation was limited to random resized
crops of dimensions 224×224. We rely on pre-trainedmodels
for fψk because of their robustness to noisy labels [39] (e.g.,

ViT models, ResNet-18 and DenseNet-121 models are pre-
trained on ImageNet-1K.) Adam optimizer was employed for
training fψk (.)with consensus D̄, where NAdam was used for
training mθk (.) on D̂, each utilizing their respective default
learning rates. Implementations were done in PyTorch and
executed on single GeForce RTX 4090 GPU.

B. SETUP FOR EXPERIMENT IN TEXT DOMAIN
This experiment evaluates L2CU in the text domain using
AgNews [36] following a simulation setup similar to CIFAR-
10. AgNews is a text classification dataset with 120,000
training, 200 validation and 7,400 testing class-balanced news
articles categorized into 4 classes. We perform pairwise label
flipping on two out of four classes, where 60% of samples
are flipped to the incorrect class while the other two classes
remained clean. We simulate three profiles of users, one that
flips between classes business↔science/technology, another
profile that flips world↔sports, and the third profile that flips
sports↔business. Five training and five testing users are sim-
ulated for each profile producing a total of 15 unique training
and testing users. The title and description were concatenated
and truncated to a maximum of 64 tokens, Bert-Tokenizer
was used to tokenize and Bert-Base-Uncased [40] model is
used as base model fψk (.) when training. All 15 test users
showed improved post-alteration accuracy over original and
a high positive alteration proportion, indicating while further
future experiments are needed, adapting to the text domain is
a possibility.

APPENDIX D
ADDITIONAL ABLATION STUDIES
This section provides the results for four additional ablation
studies: (1) post alteration accuracy vs. having a different
K than the optimal from the silhouette score (Ablation 5 in
Table 10), (2) post alteration accuracy vs. λ in loss function
eq.4 (Ablation 6 in Table 11), (3) post alteration accuracy vs.
SVM profiling errors (Ablation 7 in Table 12), and (4) post
alteration accuracy vs. profile assignment method being soft
or hard (Ablation 8 in Table 13) ; that we discussed in Sec. VI
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FIGURE 4. Estimated noise matrices for identified annotator profiles from CIFAR-10 simulation experiment.

in the main paper.

APPENDIX E
VISUALIZING NOISE PROFILES
Figure 4 shows the estimated noise matrices of identified
annotator profiles from the CIFAR-10 simulation with K =
3, selected via the silhouette score. Notably, these matrices
closely resembles the simulated noise patterns used to create
15 users—flipping between airplane↔bird, horse↔deer, and
truck↔automobile. This validates the ability of the clustering
to capture distinct noise patterns and confirms the effective-
ness of the silhouette score in selecting an optimal K for
accurate user profiling.

APPENDIX F
EXTENDED RELATED WORK
While restating that the goal of L2CU is improving human-AI
joint decision-making with unseen users, we review related
yet distinct research areas due to the interdisciplinary nature
of the problem.

Learning from Noisy-labels (LNL) aims to design algo-
rithms that are robust to the presence of noisy training labels.
Recent advancements include DivideMix [41] with its semi-
supervised approach, ELR [42] exploring early learning phe-
nomena with a regularised loss, CausalNL [43] proposing a
generativemodel for instance-dependent label-noise learning,
C2D [44] tackling the warm-up obstacle, UNICON [22]
with a unified supervised and unsupervised learning, and [45]
with graphical modeling for noise rate estimation to handle
noisy labels effectively. In contrast, L2CU does not aim to
infer clean labels, but to improve human-AI joint decision-
making by adapting to annotator-specific biases—shifting the
goal from label denoising to cooperation.

Multi-rater Learning (MRL) leverages noisy labels from
multiple annotators per sample, often to estimate consen-
sus or to mitigate the identifiability problem under certain
conditions [46]. Key developments include, [47], with ex-
pectation maximization algorithm to estimate ground truth,
MRNet [48], which addresses multi-rater disagreement, [21],

estimating consensus being model-agnostic in design, [49]
adopting a Mixture of Experts architecture for learning from
multiple noisy sources, and [50] addressing the sparse crowd
annotations. We employ [21] to estimate consensus in L2CU
for its model-agnostic nature and good performance, although
it is an open choice in L2CU framework. Although consensus
estimation is a preliminary step, L2CU’s core contribution
lies in complementing annotator-specific behavior—an ob-
jective different from MRL.
Learning with crowds (LWC) aims to train models with

sparse labels provided by multiple annotators. [51] and [52]
aim to aggregate diverse annotator signals while addressing
label reliability. Sel-CL [53] tackles noisy supervision by
leveraging contrastive learning to better separate clean and
corrupted labels. AIDTM [54] learns annotator-specific noise
patterns, while CCC [55] handles settings with limited labels
per annotator through parameter-efficient modeling. How-
ever, unlike LWC, that aims to denoise annotations, L2CU
preserves individual annotator signals to train profile-specific
cooperative AI models that can adapt to and complement
unseen users.
Despite improvements from LNL, MRL and LWC, an

accuracy gap persists compared to training with clean la-
bels. This has led to our human-AI joint decision-making
paradigm, which incorporates inputs from both humans and
AI to make decisions. Unlike objectives of recommendation
systems, LWC, LNL orMRL—that focus on preference mod-
eling, inferring latent ground truth, being robust to label noise,
or consensus estimation—our goal is to improve human-AI
joint decision-making by complementing unseen users—the
fundamental distinction of L2CU.
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