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Abstract

This paper addresses the critical data scarcity that hin-
ders the practical deployment of learning to defer (L2D)
systems to the population. We introduce a context-aware,
semi-supervised framework that uses meta-learning to gen-
erate expert-specific embeddings from only a few demon-
strations. We demonstrate the efficacy of a dual-purpose
mechanism, where these embeddings are used first to gen-
erate a large corpus of pseudo-labels for training, and
subsequently to enable on-the-fly adaptation to new ex-
perts at test-time. The experiment results on three different
datasets confirm that a model trained on these synthetic la-
bels rapidly approaches oracle-level performance, validat-
ing the data efficiency of our approach. By resolving a key
training bottleneck, this work makes adaptive L2D systems
more practical and scalable, paving the way for human-AI
collaboration in real-world environments.

1. Introduction
Recent advances in AI systems have achieved near-

human or superhuman performance across diverse fields,
such as computer vision [5] and medical image analysis
[17, 22]. Despite these achievements, purely automated
AI models often fall short in safety-critical areas, includ-
ing healthcare diagnostics [2, 16]. This limitation has mo-
tivated the emergence of hybrid intelligence systems that
integrate human experts with AI, leveraging the comple-
mentary strengths of both [9, 4, 1]. A prominent branch
of hybrid intelligence is Learning to Defer (L2D), which
enables AI models to either autonomously predict or de-
fer uncertain and high-risk decisions to human experts
[10, 13, 14, 26, 11, 23, 24].

Conventional L2D systems, trained on a fixed cohort of
experts, exhibit poor generalization to new individuals at
test-time [16, 23]. To address this, adaptive L2D approaches
have emerged that learn to model diverse expert behaviors
by conditioning on past decisions effectively using them as
a form of context. [21, 20]. However, the efficacy of these

adaptive models is contingent on extensive labeled datasets
that capture the full spectrum of population behavior—a re-
quirement posing a significant practical barrier. Existing
methods to mitigate this data dependency are themselves in-
sufficient. They are either architecturally confined to single-
expert scenarios [8] or, if population-based, cannot general-
ize to experts unseen during training [14]. A critical gap
therefore exists: there is no data-efficient methodology for
training L2D models that are simultaneously context-aware
and adaptive to new experts.

To bridge this gap, we propose a context-aware semi-
supervised L2D framework that adapts to unseen experts
from limited demonstrations. We formulate this as a meta-
learning task where the model learns to generate an expert-
specific embedding from just a few examples of their de-
cisions, thereby capturing an individual’s unique behav-
ior. This context-aware embedding serves two critical func-
tions. First, during training, it is leveraged to generate a
large corpus of pseudo-labels for a diverse population. This
synthetically-labeled data then provides the supervision re-
quired to train a robust downstream L2D model. Second,
at test-time, the embedding itself acts as the context vector,
enabling the trained L2D model to adapt its deferral strategy
to any new expert on the fly.

To summarized, our contributions include:

• The introduction of a novel context-aware SSL frame-
work that generates pseudo-labels representing the di-
verse labeling behaviors within a population of ex-
perts, from a handful of labeled examples per expert.

• A meta-learning framework that models the meta-
expert representation enabling the downstream adap-
tive L2D models.

• Empirical demonstration of our framework’s effective-
ness across multiple tasks highlighting its ability to
achieve robust deferral performance by adapting to
new experts even with extremely limited data.

Collectively, our work represents a significant advancement
in hybrid intelligence, making L2D systems more practical,
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scalable, and adaptive to real-world collaborative environ-
ments.

2. Related Work

Research over the last few years has investigated com-
bining human and AI capabilities for superior team perfor-
mance, exceeding what either could achieve alone. Within
this context, L2D algorithms, which allow an AI model to
either make a prediction or defer to a human expert, have
shown promise. Early approaches focused on estimating
confidence levels for both the classifier and the expert, de-
ferring when the human was deemed more confident [16].
Others optimized for overall team performance by training
the classifier to specifically complement the expert’s abil-
ities [25], often jointly training the classifier and deferral
mechanism [10, 15, 25]. Further advancements include ob-
jective functions with theoretical guarantees for regression
[3], as well as Mozannar and Sontag’s (2020) consistent
surrogate loss inspired by cost-sensitive learning. Building
on this, Raman and Yee (2021) personalised the deferral
system to specific experts through fine-tuning [18]. Addi-
tional studies have explored instance assignment under ban-
dit feedback [6] and allocation within teams comprising an
AI and multiple experts [7]. However, a common assump-
tion underlying much of this work is that the human expert
providing input remains the same between the training and
deployment phases.

Although L2D-Pop [21] successfully adapts to evolving
expert behaviors at test time, its meta-training phase still de-
pends on a vast corpus of labeled data—both ground-truth
annotations and expert demonstrations. Acquiring such ex-
tensive expert labels is often impractical and prohibitively
expensive. One might consider model-based imputation [8]
to synthesize labels for each expert, but these methods are
inherently tailored to a single, fixed expert and would de-
mand costly training of separate models for each individual.
This gap highlights the absence of any scalable approach
capable of generating pseudo-labels that reflect the full di-
versity of an expert population. To overcome this limita-
tion, we introduce a meta-learning framework that, given
only a small context set from an expert, produces high-
quality, expert-aligned pseudo-labels on the fly—using a
single, unified model—thereby dramatically reducing the
annotation burden for downstream population-aware L2D
applications.

3. Problem Formulation

To formalize our approach, we define our learning en-
vironment as follows. Let the input space be denoted by
X and the set of k discrete classes by Y = {1, . . . , k}.
We assume access to a primary ground-truth dataset Dgt =
{(xi, yi)}Ni=1. We consider a population of M experts,

E = {e1, . . . , eM}, where for each expert e ∈ E, we
only have access to a limited set of historical annotations,
Dl
e = {(xi, yihei )}i∈L, where hei ∈ Y is the label provided

by expert e. The core constraint is that for every expert, this
labeled set is small: |L| ≪ N .

Training an independent predictive model for each of the
M experts, as in single-expert strategy explored in [8], is
impractical for a population. This approach would require
maintaining M separate models, prevent sharing statistical
strength across related experts, and be operationally expen-
sive. Instead, our goal is to develop a single, unified model
that can generalize across the entire population E.

To enable this, in our approach our model is conditioned
on an expert-specific context set, Ce, which provides a few
examples of the expert’s annotation behaviour. This set is
formed by sampling B instances from the expert’s avail-
able data, Dl

e, where B is a small, fixed-size hyperparam-
eter. For each sampled instance, we form a triplet con-
taining the input, its ground truth, and the expert’s label:
Ce = {(xb, yb, heb)}Bb=1. Each triplet (xb, yb, heb) allows the
model to observe the conditional error pattern of the ex-
pert—that is, the discrepancy between their label heb and
the ground-truth yb for a given input xb.

4. Approach
To address per-expert data scarcity, we propose a semi-

supervised framework that learns to predict expert behav-
ior by conditioning on a small set of their past decisions.
Our approach uses a model-based meta-learning paradigm
[12] to generate an expert-specific embedding that captures
an individual’s unique behavioral style. This embedding
serves a dual purpose: it is used to generate a large corpus
of pseudo-labels to train a downstream L2D model, and it
enables on-the-fly adaptation to unseen experts at test-time.

As depicted in Figure 1, our architecture generates
expert-aligned pseudo-labels via three modules. The Con-
text Set Encoder (Φenc) first creates a behavioral embed-
ding from an expert’s context set. This expert embedding,
together with input features from the Embedding Model
(Φemb) is then passed to the Expert Predictor (Φex) which
produces the final, tailored pseudo-label. The encoder
(Φenc) is also re-used at test time to adapt the L2D model
to new experts. We explain the process in more detail in the
following sections.

4.1. Foundational Feature Representation

The first step in our pipeline is to establish a shared fea-
ture representation for all images. We begin by establishing
a foundational feature representation. Let Φemb : X → Rf
be a feature extractor that embeds high-dimensional image
inputs into a compact representation. This corresponds to
the Embedding Model, Φemb block in Figure 1. Follow-
ing standard transfer-learning protocols, we pre-train Φemb
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Figure 1. A small context set Ce = {(xb, yb, h
e
b)}Bb=1 summarises expert e. Image features from the frozen backbone Φemb are concatenated

with label embeddings and processed by the set encoder Φenc, yielding the expert embedding ψe. For a query image xj the same Φemb

encodes the image; this vector is combined with ψe and passed to the expert-aware head Φex, which predicts whether the expert will
label the query correctly or incorrectly. Each expert contributes a supervised loss Le

s on its labelled data and a consistency loss Le
u on its

unlabelled data;averaging across these terms yields the meta-objective L that trains the entire multi-task model across all experts.

jointly with a classification head Ω: Rf → Y on the com-
plete ground-truth dataset

Dgt = {(xi, yi)}Ni=1

using the cross-entropy loss H:

Lemb =
1

N

N∑
i=1

H
(
yi, Ω

(
Φemb(xi)

))
.

This pre-training phase yields a robust feature space that
underpins the subsequent, more nuanced task of modelling
individual expert behaviour. The parameters of Φemb are
thereafter frozen.

4.2. Context-Aware Expert Predictor

With this foundational feature space established, we now
introduce the core of our method, which learns to model
expert-specific behaviours. The core of our method com-
prises two jointly trained components: an expert context
set encoder Φenc and an expert predictor model Φex. This
system uses an attention-based architecture to condition its
predictions on a concise summary of an expert’s past deci-
sions.

Expert context set encoder. The first component, Φenc, is
responsible for processing the expert’s history. As shown
at the top of Figure 1, it takes the expert’s context set Ce,
where each element consists of an image, its ground-truth
label, and the expert’s label. For every example in the set,
the encoder forms an initial representation by concatenating
the image features (from Φemb) with embeddings of the two
labels. These representations are then fed through a self-
attention mechanism, enabling the model to capture the in-
ternal relationships within the expert’s historical decisions.

Expert predictor model. The second component is an
expert-aware behaviour predictor, Φex, which makes the
final binary correctness prediction of an expert. This is
achieved via a cross-attention operation where the query
image’s feature vector attends to the context-aware vectors
produced by Φenc. This step, illustrated in the center of Fig-
ure 1, produces the single, query-specific expert embedding
ψe, which emphasizes the most relevant past decisions for
the current query.

Finally, the expert predictor Φex uses this embedding ψe
to predict the correctness of the expert’s annotation for the
new query instance x∗. This is done by concatenating the
embedding ψe and the query image’s features before pass-
ing it to the prediction head Φex, which yields final the bi-
nary outcome:

ĥebin = Φex
(
x∗, ψe

)
∈ {0, 1},

where 1 signifies that the expert will predict a correct label
for instance x∗.

4.3. Semi-Supervised Learning

We train a single model to predict behaviour for allE ex-
perts in a multi-task setting, jointly minimising supervised
and unsupervised objectives.1

Data splits. The ground-truth datasetDgt is partitioned by
annotation availability. The small annotated subset is

Dl =
{
(xi, yi)

∣∣ ∃ e ∈ E s.t. (xi, hei ) ∈ Dl
e

}
,

1Weak and strong augmentations are denoted Augw(·) and Augs(·),
respectively, following FixMatch [19].



while the unannotated subset is Du = Dgt \Dl. With ℓ =
|Dl| and u = |Du|, we have N = ℓ + u total training
instances.

Supervised loss. For expert e, define the binary target
hebin,i = 1 if hei = yi and 0 otherwise. The supervised
learning objective for expert e is

Les =
1

ℓ

ℓ∑
i=1

H
(
hebin,i, Φex

(
Φemb

(
Augw(xi)

)
, ψe

))
, (1)

where ψe is the expert embedding.

Unsupervised consistency loss. For the larger unanno-
tated set Du, we generate pseudo-labels and enforce a con-
sistency objective to improve the model’s generalization.
The core idea is that the model should predict the same out-
come for an image even when that image is subjected to
strong distortion. First, we create a weakly augmented ver-
sion of an unlabeled image, Augw(xj), and feed it through
the model to obtain soft prediction logits qej,w. If the model
is confident in this prediction determined by comparing its
maximum probability to a predefined threshold τ , we con-
vert these soft logits into a hard pseudo-label q̂ej . We then
create a strongly augmented version of the same image,
Augs(xj), and enforce that the model’s prediction on this
distorted image matches the pseudo-label q̂ej . This process
forces the model to learn representations that are robust to
significant augmentation, improving its consistency.

This unsupervised loss objective for an expert e is ex-
pressed as the cross-entropy H between the pseudo-label q̂ej
and the prediction on the strongly augmented sample, aver-
aged over all confident predictions:

Leu =
1

u

u∑
j=1

1
[
max qej,w ≥ τ

]
×H

(
q̂ej , Φex

(
Φemb(Augs(xj)), ψe

)) (2)

Meta-objective. The overall loss aggregates across ex-
perts:

L =

E∑
e=1

(
Les + λLeu

)
, (3)

where λ balances supervised and unsupervised terms. Op-
timising L yields a shared encoder Φemb and expert-specific
embeddings ψe, that enables robust label prediction even
for experts with limited initial labels.

4.4. Context-Aware Expert Label Generation

Once the model is trained, we deploy it to achieve our
primary objective: generating a complete set of context-
aware expert labels for the entire dataset. Given an expert
context set Ce and a query image xj , we first predict binary
correctness of the expert on query image xj :

ĥebin,j = argmaxΦex
(
Φemb(xj), ψe

)
. (4)

Then the final categorical expert label is given by:

ĥej =

{
yj , if ĥebin,j = 1,

Uniform
(
Y \ {yj}

)
, otherwise.

(5)

Applying this to all (xj) ∈ Dgt for every expert e yields a
dataset of augmented labels for the population E.

4.5. Context-aware L2D

The generated pseudo-labels provide the necessary su-
pervision for our downstream L2D model. For this purpose,
we adapt the L2D-Pop architecture [21], which personal-
izes deferral decisions by conditioning on each individual
expert’s context-set.

Formally, based on the surrogate loss framework of [13],
the label set Y is augmented with a deferral option ⊥, al-
lowing the model to learn both classification logits g =
(g1, . . . , gK) and a deferral logit g⊥. L2D-Pop achieves
personalisation by encoding an expert’s context set Ce, a
small number of past decisions, into a permutation-invariant
embedding ψe. This embedding then conditions the defer-
ral logit, g⊥(x,ψe), enabling the model to tailor its deferral
strategy to each specific expert. The population-aware sur-
rogate loss is given as follows:

ϕL2D-Pop = − log
egy(x)

Z
(
x,ψe

)
− 1[me = y] log

eg⊥
(
x,ψe

)
Z
(
x,ψe

) ,
(6)

where Z
(
x, ψe

)
= eg⊥(x,ψe) +

∑K
k=1 e

gk(x).

We re-use the Φenc (Figure 1) to train the L2D-Pop
model, as it represents the meta behaviour of the expert pop-
ulation.

Test-time inference. At test time, for each expert e we
first infer their context-set embedding ψe by encoding
the few labeled examples Ce through the frozen encoder
Φenc. Given a new query x∗, the L2D-Pop head produces
both classification logits {gk(x∗)}Kk=1 and the deferral logit
g⊥(x

∗, ψe). The final decision is

d̂ =

arg max
k∈{1,...,K}

gk(x
∗), if g⊥(x∗,ψ)

<maxk gk(x
∗),

⊥, otherwise.



We thus defer to expert e whenever its conditional deferral
score exceeds the highest class score, yielding personalized
deferral decisions at inference time.

5. Experiments

Our empirical study examines two questions: (1) Can
a handful of past decisions per expert be leveraged to pro-
duce a large pool of high-quality synthetic labels, and (2) do
those labels enable a downstream Learning-to-Defer model
to generalise and defer effectively to unseen experts, achiev-
ing performance close to an oracle trained on all true expert
labels?

To this end, we first generate a complete set of synthetic
expert labels from scarce initial data for the entire popula-
tion. We then use these labels to train a downstrean L2D-
Pop model. We thereby demonstrate that our generated la-
bels are of sufficiently high quality to improve this down-
stream task to near-oracle performance, even when adapting
to experts unseen during training.

5.1. Label Generation

Datasets and Feature Backbone for Label Generation.
Our label generation framework is evaluated on three stan-
dard vision benchmarks: CIFAR-10 (10 classes), FASH-
IONMNIST (10 classes), and GTSRB (43 classes). For this
stage, a Wide-ResNet-28-10 network is used as the image
encoder Φemb. For CIFAR-10 and FASHIONMNIST, Φemb
is pre-trained on an 80%/20% train/validation split of the
official training data. For GTSRB, it is trained on the full
official training set and validated on the official test set. Af-
ter pre-training, the backbone is frozen and used as a fixed
feature extractor for the core task of modeling expert be-
haviour.

Synthetic Expert Population. To ensure a controlled and
reproducible environment, we create a population of ten
synthetic experts. Each expert is defined by an oracle set
of classes it labels with 100% accuracy. For our 10-class
datasets, the oracle set size is H = 8, and for GTSRB, it is
H = 34, establishing a baseline expert accuracy of approx-
imately 80%. For any input outside its oracle set, the expert
provides a label chosen uniformly at random from the in-
correct options. In practice this balance is critical: if experts
are too weak the system rarely defers; if they are nearly per-
fect the classifier becomes redundant. With these H values
we obtain a regime in which deferral is both meaningful
and beneficial, as reflected in the accuracy gains reported
across different expert strength for CIFAR10. To create a
diverse population with distinct but overlapping skills, the
oracle sets are generated cyclically, ensuring that the simi-
larity between any two consecutive experts is controlled and
providing a challenging testbed for personalization.

Number of Labels. The label-generation model is trained
to predict each of the ten experts’ correctness. We simulate
per-expert data scarcity by limiting the number of available
ground-truth annotations to L = Nc × k, where Nc is the
number of classes and k ∈ {2, 4, 6, 10, 20, 50, 250} repre-
sents the number of labeled examples per class. In the
most extreme case (k = 2 on CIFAR-10), the model must
learn an expert’s behaviour from only L = 20 examples.
During this training stage, the context-set size is fixed to
B = 2 ×Nc, matching the available data in the most data-
scarce setting.

5.2. Context-Aware L2D Training and Evaluation

We choose the state-of-the-art L2D-Pop model proposed
in [21] as our base model. A key aspect of this setup is
the intentional use of a small, fallible CNN as the classi-
fier’s feature extractor, following a common practice in L2D
literature [21, 13, 11] This is mainly because datasets like
CIFAR-10 are largely solved, a high-capacity backbone
would create a near-perfect classifier and render the defer-
ral task trivial. This simpler model, consisting of only two
convolutional blocks followed by a linear classifier head,
ensures a meaningful testbed where both AI and expert have
unique weaknesses. Using this backbone, we train two sys-
tems for comparison: the Proposed System, which uses
our synthetic labels, and an Oracle Upper Bound, which
uses the complete set of true expert labels. The models are
trained using a 90%/10% train/validation split for CIFAR-
10 and FASHIONMNIST and the official test sets are used
as testing set; for GTSRB, the official training set is used
for training, and the official test set is split 50/50 for val-
idation and testing. Finally, during evaluation, the system
is evaluated on ten experts—five “seen” experts from the
label-generation phase and five “unseen” experts whose be-
haviour must be inferred at test time—using a context-set
size of B = 50 as in the original L2D-Pop pipeline.

Single-L2D and L2D–Pop variants. We evaluate Single-
L2D, a population-agnostic baseline trained on pooled ex-
pert data and three variants of the base L2D–Pop architec-
ture: NP+Attention, our full model featuring a Neural Pro-
cess encoder with multi-head attention; NP, a lighter vari-
ant in which the attention module is replaced by an MLP-
based aggregator; Finetune, which initialises Single-L2D
and fine-tunes it on each expert’s context set.

Metrics. We report two key metrics shown in Figure 2:
system accuracy, which measures the performance of the
complete system, and Expert accuracy on deferred in-
stances, which is an indicator evaluating the quality of the
deferral policy. By varying the initial data budget L, we
quantify how effectively our synthetic labels close the per-
formance gap to the oracle upper bound.



Figure 2. Impact of increasing L on downstream L2D-Pop performance. Each column corresponds to one dataset—Fashion-MNIST (left),
CIFAR-10 (center), and GTSRB (right). Top row: overall human–AI system accuracy. Solid lines show the four model variants (NP +
Attention, NP, Finetune, and Single); matching-color dashed lines denote their oracle upper bounds, and the black dashed line marks the
classifier-alone baseline. Bottom row: expert accuracy after deferral. Solid lines again show the four variants with their oracle upper
bounds (matching-color dashed lines); the grey dashed line indicates the expert-alone baseline.

6. Results
Figure 2 summarises downstream system and expert ac-

curacy as a function of the label budget L. Across all three
dataset, even a modest number of initial labels enables ev-
ery L2D–Pop variant to surpass both stand-alone baselines
and to approach its oracle upper bound.

System Performance Analysis For both the Fashion and
CIFAR10 datasets, all tested methods demonstrate high sys-
tem accuracy even with a limited budget of L=100 labels,
achieving results close to their respective upper bounds. On
the Fashion dataset, the L2D-POP variants NP+Attention
and NP achieve system accuracies of 93.1% and 93.2%,
which represents a significant increase of 2.7 and 2.8 per-
centage points (pp) over the standalone classifier’s 90.4%
accuracy. The Finetune and Single methods also outper-
form the classifier, with accuracies of 92.5% (a 2.1 pp im-
provement) and 91.8% (a 1.4 pp improvement). This trend
is even more pronounced on the CIFAR10 dataset, where
NP+Attention (88.8%) and NP (89.1%) achieve substantial
gains of 12.5 and 12.8 pp over the 76.3% accuracy of the
standalone classifier. The Finetune and Single methods also
show strong performance, both reaching 85.8% accuracy, a
9.5 pp improvement. Similarly, on the GTSRB dataset, with
a low budget of L=86, all methods surpass the classifier-
alone accuracy of 74.8%. The NP+Attention and NP meth-
ods reach 92.9% (an 18.1 pp gain), while Finetune achieves
91.6% (a 16.8 pp gain) and Single reaches 90.2% (a 15.4 pp

gain).

Expert Deferral Performance In terms of leveraging ex-
pert input, all methods consistently improve upon the ex-
pert’s standalone accuracy. For the Fashion dataset at
L=100, the NP+Attention and NP methods achieve expert
accuracies of 90.6% and 90.0%, marking an 8.6 and 8.0 pp
increase, respectively, over the expert’s baseline of 82.0%.
Finetune and Single also show improvements of 3.8 and 2.3
pp, respectively. On the CIFAR10 dataset, the L2D-POP
variants continue to lead, with NP+Attention (89.2%) and
NP (89.6%) improving upon the expert by 7.2 and 7.6 pp.
Finetune and Single methods provide more modest gains of
1.9 and 1.5 pp. For the GTSRB dataset, with a budget of
L=86, the NP+Attention method achieves an expert accu-
racy of 95.0%, which matches its upper bound and is 8.1 pp
higher than the expert alone (86.9%). The NP, Finetune, and
Single methods also demonstrate effective deferral, improv-
ing expert accuracy by 7.1, 4.1, and 2.3 pp, respectively.

7. Discussion
High-Quality Labels from Scarce Data. The most
salient result is the data efficiency of our framework. Across
all three datasets, the performance of the system trained on
synthetic labels (solid orange and red curves) rapidly ap-
proaches the oracle upper bound (dashed black and purple
lines) with only a small number of initial expert annota-
tions, L. With as few as L = 50 labels per expert (e.g.,



Expert strength H L2D-Pop(NP+Attention) L2D-Pop(NP) Finetune Single-L2D

2 −3.6 −0.9 −12.3 −11.8
5 4.9 4.4 −4.1 −3.8
8 12.7 12.9 9.4 9.3

Table 1. Accuracy gain (%) over the classifier baseline (76.3%) on CIFAR-10 for several expert strengths H . The recommended setting
H=8 for CIFAR10 is highlighted

k = 5 for 10-class datasets), our system already closes most
of the performance gap. Furthermore, the overall system
accuracy consistently surpasses the performance of either
the classifier-alone or expert-alone baselines, demonstrat-
ing that our generated labels successfully enable an effec-
tive AI–expert collaboration. Notably, these strong results
hold for both experts seen during label generation and for
completely novel experts, demonstrating the generalization
capability of our approach.

Sensitivity to Initial Label Quality. A key limitation of
our approach is its sensitivity to label noise in the small
initial dataset (L). Our semi-supervised method assumes
consistent labeling for similar inputs, a principle that incon-
sistent expert errors can violate. Consequently, the frame-
work requires a ”clean” initial set—where an expert’s be-
havior for any given input type is consistently correct or
incorrect—as any noise in this small seed set can dispro-
portionately degrade performance.

This requirement presents a clear trade-off. Unlike meth-
ods such as PL2D [14] that handle noisy annotations by us-
ing more data, our approach is optimized for data-scarce
scenarios. It achieves strong performance with very few la-
bels (e.g., L = 50), provided this initial set is of high qual-
ity. Our method thus exchanges robustness to label noise
for higher data efficiency.

Sensitivity to expert strength H Table 1 shows how sys-
tem accuracy on CIFAR-10 changes, relative to a 76.3%
classifier baseline, as the simulated expert’s strength H in-
creases. With a weak expert (H = 2), deferring offers
little benefit—L2D-Pop(NP+Attention) still falls 3.6 pp
below the baseline, and population-agnostic models fare
even worse. Once the expert reaches moderate reliabil-
ity (H = 5), the two L2D-Pop variants turn this deficit
into gains of about +4.5 pp, whereas Finetune and Single-
L2D remain negative. When the expert is strong (H = 8),
every method improves markedly; the expert-conditional
L2D-Pop variants lead with gains of +12.7 pp and +12.9 pp,
clearly outperforming simple fine-tuning and population-
agnostic training.

8. Conclusion
This paper addressed the expensive data requirements

that hinder the practical application of population-aware
learning to defer systems. Our work introduces a novel,
context-aware semi-supervised framework that uses meta-
learning to generate high-quality synthetic labels for a di-
verse expert population from only a few initial demon-
strations. Extensive experiments show that a downstream
model trained on our pseudo-labels approaches oracle-level
performance and generalizes effectively to unseen experts.
While reliant on a small, high-quality set of seed annota-
tions, our method significantly lowers the barrier for de-
ploying sophisticated, adaptive L2D systems in the real
world. By resolving this critical training data bottleneck,
we pave the way for more practical, scalable, and robust
human-AI collaboration in critical decision-making envi-
ronments.
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