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Abstract
Recent advances in 3D Gaussian Splatting (3DGS) have achieved state-of-the-art results for novel view synthesis. However,
efficiently capturing high-fidelity reconstructions of specific objects within complex scenes remains a significant challenge. A
key limitation of existing active reconstruction methods is their reliance on scene-level uncertainty metrics, which are often
biased by irrelevant background clutter and lead to inefficient view selection for object-centric tasks. We present OUGS, a
novel framework that addresses this challenge with a more principled, physically-grounded uncertainty formulation for 3DGS.
Our core innovation is to derive uncertainty directly from the explicit physical parameters of the 3D Gaussian primitives (e.g.,
position, scale, rotation). By propagating the covariance of these parameters through the rendering Jacobian, we establish a
highly interpretable uncertainty model. This foundation allows us to then seamlessly integrate semantic segmentation masks
to produce a targeted, object-aware uncertainty score that effectively disentangles the object from its environment. This allows
for a more effective active view selection strategy that prioritizes views critical to improving object fidelity. Experimental
evaluations on public datasets demonstrate that our approach significantly improves the efficiency of the 3DGS reconstruction
process and achieves higher quality for targeted objects compared to existing state-of-the-art methods, while also serving as a
robust uncertainty estimator for the global scene.

CCS Concepts
• Computing methodologies → Reconstruction; Active vision; Image-based rendering;
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1. Introduction

Efficient 3D scene reconstruction is a foundational goal in com-
puter vision and robotics. The advent of Neural Radiance Fields
(NeRF) [MST∗20] marked a breakthrough, enabling photorealis-
tic novel view synthesis by learning implicit volumetric represen-
tations. More recently, 3D Gaussian Splatting (3DGS) [KKLD23]
has emerged as a compelling alternative. By modeling scenes with
explicit 3D Gaussian primitives and leveraging a fast, differentiable
rasterization pipeline, 3DGS achieves real-time rendering speeds
without compromising visual fidelity, addressing the high compu-
tational cost that limits NeRF’s practicality.

Despite these advances, both NeRF and 3DGS remain highly
data-intensive, typically requiring dense image captures to pro-
duce high-quality reconstructions [NBM∗22, CKD∗25]. This mo-
tivates the need for active reconstruction [CLK11], where a hu-
man [STC∗25,MZC∗25] or robotic agent actively selects a minimal
subset of views that maximally reduces uncertainty. Achieving this
requires models to estimate their own information needs in real-
time—a capability that hinges on accurate uncertainty estimation.
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Figure 1: A complex background can inflate image-level uncer-
tainty. This can mislead active view selection away from the object.

In this context, recent work has explored incorporating uncer-
tainty into both NeRFs [GRS∗24, KMKS25] and 3DGS. For the
latter, emerging research has methods based on ensemble vari-
ance [HD25] or Fisher Information approximations [JLD25]. How-
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Figure 2: Object-aware uncertainty guides 3DGS view planning for precise object reconstruction. Our physically-grounded uncertainty
model, derived from the explicit parameters of the 3D Gaussians, is combined with a semantic mask to generate an object-level uncertainty
score. This score effectively guides the active view selection to improve object fidelity, as shown for 5, 10, and 20 selected views.

ever, these pioneering methods share a fundamental limitation: they
typically estimate uncertainty at the scene level. As illustrated in
figure 1, a global uncertainty score is often dominated by com-
plex but irrelevant background clutter, misleading the view selec-
tion process. This is particularly problematic for applications where
the primary goal is to capture a specific object of interest with the
highest possible fidelity, such as in cultural heritage preservation,
industrial inspection, and AR [CLDC23, WC23]. These scenarios
demand object-centric planning, where background noise can dis-
tort the focus.

To address this critical gap, we introduce OUGS, a framework
designed specifically for object-centric active reconstruction that
prioritizes the most informative camera viewpoints during train-
ing to improve reconstruction quality and efficiency (Figure 2) Our
work is built upon a key insight: to effectively isolate an object’s
uncertainty, one must first model uncertainty from a more funda-
mental, physically-grounded source, as is common practice, our
method is the first to establish a rigorous framework that quanti-
fies uncertainty directly from the explicit physical parameters of
the 3D Gaussian primitives—their position, scale, rotation, and ap-
pearance. We begin by treating these parameters as random vari-
ables and propagate their covariance through the differentiable ren-
dering pipeline via the Jacobian. This yields a pixel-wise visual un-
certainty map that is not only robust but also highly interpretable.
This covariance captures epistemic uncertainty over existing Gaus-
sian parameters—precisely what next-best-view selection aims to
reduce during refinement. Since unobserved regions may lack in-
stantiated Gaussians after sparse initialization, our method focuses
on improving already-represented areas rather than discovery of en-
tirely new structure.

This explicit projection to pixel space represents a crucial advan-
tage over implicit methods like FisherRF [JLD25]. While FisherRF
optimizes an information-theoretic objective in the abstract param-
eter space of a neural field, our approach generates a native spatial
uncertainty field. This spatial modularity allows us to seamlessly
integrate semantic masks as direct filters, effectively disentangling
the target object’s uncertainty from its environment.

To ensure scalability, we approximate the parameter covariance
using a diagonal Fisher Information Matrix (FIM), updated effi-

ciently through an exponential moving average. This complete for-
mulation enables an active view selection strategy that is power-
fully and precisely focused on the object of interest. Our contribu-
tions are threefold:

• We introduce a novel active reconstruction framework specifi-
cally designed for object-centric tasks in 3DGS, addressing a
key limitation of existing scene-level methods.

• We propose a new, physically-grounded uncertainty model
based on the explicit parameters of 3D Gaussians, offer-
ing greater accuracy and interpretability compared to implicit,
weight-based approaches.

• Through extensive experiments, we demonstrate that our method
significantly outperforms state-of-the-art approaches in object-
focused reconstruction while maintaining strong performance on
global scene metrics.

2. Related Work

2.1. Uncertainty in 3D Splatting

Quantifying uncertainty in 3DGS is an emerging research area cru-
cial for real-world applications. Current approaches can be catego-
rized into four main directions: (1) Variational/Bayesian. A prin-
cipled approach is to treat Gaussian parameters as distributions. Li
& Cheung [LC24] use hierarchical Bayesian priors, while Savant et
al. [AVM25] employ variational inference. While mathematically
rigorous, these methods incur significant computational overhead,
limiting their real-time applicability. (2) Sensitivity-based prun-
ing. Alternatively, some methods measure the model’s sensitivity
to its parameters. PUP 3D-GS, for instance, uses a Hessian-based
metric to prune Gaussians with high uncertainty. This approach is
efficient but offers a less direct measure of predictive uncertainty.
(3) Learned uncertainty fields. Several works train auxiliary pre-
dictors to output uncertainty maps or uncertainty-related signals.
UNG-GS [TCZ∗25] introduces an uncertainty-aware field to better
handle sparse inputs, while Han & Dumery [HD25] learn a view-
dependent uncertainty field for 3DGS. These methods are flexi-
ble, but the resulting uncertainty is typically model-dependent and
may be less physically interpretable than parameter-centric formu-
lations. We note that some concurrent 3DGS uncertainty systems
(including UNG-GS at the time of our experiments) did not provide
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a publicly available implementation, which prevented us from re-
producing their exact pipelines and performing controlled, apples-
to-apples comparisons under our object-centric evaluation proto-
col. (4) Information-theoretic. Finally, information theory can be
used to quantify the information value of additional views. GauSS-
MI [XCZ∗25], for instance, selects views that maximize mutual
information. While powerful for view selection, this paradigm fo-
cuses on the information value of candidate views rather than di-
rectly modeling the inherent uncertainty of the current reconstruc-
tion.

Our work carves a distinct path by adopting an efficient, FIM-
based approximation of parameter uncertainty. We apply this for-
mulation directly to object-centric active view selection—a critical
application gap not fully addressed by prior works.

2.2. Uncertainty for Active View Selection

Active view selection, or Next-Best-View (NBV) planning, is a
long-standing problem in computer vision and robotics [CLK11],
aiming to intelligently choose views to maximize reconstruction
quality while minimizing cost. Methodologies have evolved sig-
nificantly over time. (1) Traditional and geometric methods.
Early approaches in robotics often relied on geometric heuristics.
For instance, receding-horizon planners like the one by Bircher
et al. [BKA∗16] aim to maximize exploration of unknown free
space using occupancy maps. Other classical NBV methods use
voxel-grid representations and select views based on metrics like
Shannon entropy or frontier exploration [KSH22]. While effec-
tive for coverage, these discretized methods can struggle to cap-
ture fine geometric details and are less suited for the continuous
representations used in modern neural rendering. (2) Uncertainty-
and information-driven neural rendering. With neural render-
ing, view selection can be guided by predictive uncertainty or in-
formation gain. ActiveNeRF [PLSH22] uses variance-driven cri-
teria, while FisherRF [JLD25] proposes Fisher-information-based
objectives for principled NBV selection. Concurrent works ex-
tend these ideas to 3DGS: POp-GS [WAM∗25] uses Fisher-matrix-
based planning, while GauSS-MI [XCZ∗25] ranks views by mu-
tual information. However, these methods optimize global scene-
level objectives, where background clutter can dominate the plan-
ning signal—suboptimal when reconstructing a specific object. As
POp-GS lacked public code during our study, we compare against
baselines with available implementations under controlled settings,
using identical masks where applicable. (3) Other view-selection
paradigms. Beyond uncertainty and information-theoretic ap-
proaches, other paradigms have been explored. Learning-based
methods, such as NeurAR [RZH∗23], employ reinforcement learn-
ing to train an agent that learns an optimal view selection pol-
icy directly from simulation. Concurrently, other works focus
on explicitly modeling visibility. For instance, Neural Visibility
Fields [XDM∗24] learn to predict which parts of a scene are vis-
ible from a given viewpoint, guiding selection towards views that
maximize observable new area. While powerful, these methods ei-
ther require extensive training or shift the focus from reconstruction
fidelity to geometric coverage.

Our work addresses the critical limitation of scene-level uncer-
tainty methods. By introducing an object-aware mechanism built

on a physically grounded, parameter-centric uncertainty formula-
tion, we enable the view selection process to focus on semantically
important regions of the scene, a challenge not explicitly addressed
by any of these prior paradigms.

3. Method

3.1. Preliminary: 3D Gaussian Splatting

Our method builds upon the 3D Gaussian Splatting (3DGS) frame-
work [KKLD23], which represents a scene as a collection of
anisotropic 3D Gaussian primitives G = {Gi}

Ng
i=1. To ground our

uncertainty analysis, we first provide a detailed list of the parame-
ters used in the differentiable rendering pipeline. Each Gaussian Gi
is fully described by a parameter vector θi:

θi =

 µi︸︷︷︸
Center

, si︸︷︷︸
Scale

, qi︸︷︷︸
Rotation

, αi︸︷︷︸
Opacity

, fdc
i , fsh

i︸ ︷︷ ︸
Color (SH)


⊤

(1)

where the components are:

• Geometry: The 3D center µi ∈ R3, an anisotropic scaling vector
si ∈ R3

+, and an orientation quaternion qi ∈ S3. Together, these
define the Gaussian’s position, size, and orientation.

• Appearance: A scalar opacity value αi ∈ R and view-dependent
color modeled by Spherical Harmonics (SH). The color is pa-
rameterized by the degree-0 (DC) term fdc

i ∈ R3 and a set of
higher-order coefficients fsh

i ∈ R3×15.

A visual breakdown of these parameters is provided in figure 3.

Figure 3: The parameterization of a 3D Gaussian primitive.
Each Gaussian, the fundamental building block of our scene repre-
sentation, is defined by a set of explicit physical parameters.

Rendering in 3DGS uses a differentiable splatting approach
based on standard alpha compositing. First, the 3D Gaussians are
projected onto the 2D image plane and sorted in front-to-back order
based on their depth. The color C(u) for a pixel u is then:

C(u) = ∑
i∈I(u)

ci(u)α
′
i(u)

i−1

∏
j=1

(
1−α

′
j(u)

)
(2)

where I(u) is the list of Gaussians overlapping the pixel u, ci(u) is
the view-dependent color evaluated from SH. The effective opacity
α
′
i(u) is determined by modulating the Gaussian’s learned opacity

parameter αi by its projected 2D profile at the pixel location.
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3.2. Mapping 3D Gaussian Parameter Uncertainty to
Pixel-wise Object-aware Uncertainty

To quantify uncertainty, we treat the parameter vector of each Gaus-
sian as a random variable and initialize it with a Gaussian prior,
θi ∼ N (θ0

i ,Σ
0
i ). For notational clarity, we stack the per-Gaussian

covariances into a block-diagonal matrix

Σ = diag
(
Σ1, . . . ,ΣNg

)
∈ Rd×d (3)

where d = Ng · dg. Throughout the rest of this section, Σ refers to
this global covariance, while Σi denotes its i-th block. We then
project the uncertainty of the 3DGS parameters into pixel space
and describe how it interacts with a soft object mask. Here, we
present simplified expressions; full derivations and a second-order
error bound are provided in the section A of the Supplementary
Material.

Decomposition of Uncertainty Sources. A key advantage of
our explicit, parameter-centric formulation is the ability to de-
compose the total uncertainty into its underlying physical sources.
We can partition the Gaussian parameter vector θi into a geome-
try component, θ

g
i = [µi,si,qi]

⊤, and an appearance component,
θ

a
i = [αi, fdc

i , fsh
i ]⊤. Consequently, the total parameter vector θ and

its Jacobian Ju can be similarly partitioned:

θ =

[
θ

g

θ
a

]
, Ju =

[
Jg

u Ja
u
]

(4)

where Jg
u = ∂C(u)/∂θ

g and Ja
u = ∂C(u)/∂θ

a. Assuming indepen-
dence between geometric and appearance parameters (a reasonable
simplification enforced by our diagonal FIM approximation), the
pixel-wise color covariance from Eq. 6 can be expressed as a sum
of two distinct sources:

ΣC(u)≈ Jg
u Σ

g(Jg
u )

⊤︸ ︷︷ ︸
Geometric Uncertainty

+ Ja
u Σ

a(Ja
u )

⊤︸ ︷︷ ︸
Appearance Uncertainty

(5)

This decomposition is theoretically significant. It allows us to dif-
ferentiate between uncertainty arising from poorly constrained ob-
ject geometry (e.g., ambiguous boundaries, fine structures) and
uncertainty from poorly observed appearance (e.g., complex ma-
terials, view-dependent effects). Implicit methods like FisherRF,
which operate on abstract network weights, lack this inherent in-
terpretability.

Pixel-wise uncertainty Assume complete set of scene parame-
ters θ = {θi} and θ

⋆ is the MAP estimate after optimization. For
small parameter perturbations δθ = θ − θ

⋆, the change in pixel
color δC(u) can be linearly approximated using a first-order Taylor
expansion:

δC(u)≈ Juδθ.

where the Jacobian Ju = ∂C(u;θ)/∂θ ∈R3×d . Given E[δθ] = 0 un-
der a prior normal distribution, the induced pixel-colour covariance
can be written as

ΣC(u) = Var[C(u;θ)] ≈ Ju ΣJ⊤u (6)

where Σ is the full parameter covariance. Eq 6 shows that the Jaco-
bian acts as a lever arm that magnifies (or attenuates) each param-
eter’s uncertainty in proportion to that parameter’s influence on the
pixel.

Pixel-wise object-aware uncertainty To estimate the uncer-
tainty of a specific object k, we introduce a soft mask Mk(u)∈ [0,1]
based on semantic probabilities. This allows us to define an object-
specific pixel covariance ΣC,k(u) by masking the standard error
propagation formula:

ΣC,k(u) =
(
Mk(u)

)2 (Ju ΣJ⊤u
)

(7)

The mask term Mk(u) is squared because covariance propagates
quadratically via the Jacobian and its transpose.

3.3. Updating Uncertainty With FIM

While our formulation provides a physically interpretable model
of uncertainty, direct computation of the full covariance matrix Σ

is intractable. We therefore approximate it with the inverse of the
Fisher Information Matrix (FIM), Σ ≈ σ

2I−1 [LMV∗17]. Cru-
cially, our FIM is defined over the space of the 3D Gaussians’
physical parameters, capturing how perturbations in geometry and
appearance affect the rendered output. This stands in contrast to
implicit-representation methods where the FIM is computed over
abstract neural network weights.

Online Diagonal Approximation. To ensure computational
tractability, we make a key simplifying assumption: we approx-
imate the full FIM with its diagonal entries only, effectively as-
suming that the different physical parameters of a Gaussian are
locally independent. This diagonal approximation, I ≈ diag(I),
aligns perfectly with the uncertainty decomposition presented in
Eq. 5. It implies that a Gaussian’s geometric uncertainty is decou-
pled from its appearance uncertainty. While this is a strong simpli-
fication, it is a common and effective strategy that allows us to effi-
ciently estimate the parameter-wise variances. We update the diag-
onal entries It,i online during training using an exponential moving
average (EMA) of squared gradients [KB17]:

It,i = αt It−1,i +(1−αt)
[
∇θiℓt

]2
, (8)

where ℓt denotes the photometric reconstruction loss at iteration
t, ℓt =

1
2σ2 ∑u∈Ωt

∥Cpred(u)−Cgt(u)∥2
2 computed on the sampled

pixels (or patches) at step t, and [·]2 is element-wise. We employ a
time-dependent momentum schedule αt = 0.951.5 t/T . This sched-
ule gradually decreases the momentum over iterations (from 1 at
t=0 to ≈ 0.926 at t=T ), increasing the contribution of newly ob-
served gradients as optimization stabilizes.

Object-Aware Uncertainty Score. Substituting the diagonal ap-
proximation into Eq. 7 yields:

ΣC,k(u) =
(
Mk(u)

)2 Ju
(
diagIt +λI

)−1J⊤u , (9)

where λ is a small damping factor to ensure numerical stability.

Note that unlike expected information gain objectives that quan-
tify parameter-space entropy reduction, our score sums pixel-space
predictive variances, enabling direct spatial modulation via object
masks. Key differences from FisherRF [JLD25]: (1) we project pa-
rameter covariance into pixel space, allowing native 2D mask inte-
gration for object-centric planning; (2) we maintain an online EMA
estimate during training rather than snapshot-based gradient evalu-
ation, stabilizing uncertainty under stochastic mini-batches.
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Figure 4: Object-aware approach speeds up convergence. Curves are recorded on the statue scene of the LF dataset as new views are
added. Top: panoramic PSNR/SSIM/LPIPS; middle: the same metrics evaluated only inside the object. Bottom: visual progression at 5, 10,
15 and 20 views; red circles mark regions where the competing method keeps struggling while our reconstruction sharpens steadily.

4. Experiments

4.1. Experimental Setup

Dataset. We conduct our evaluation across three public datasets
to ensure coverage of diverse capture scenarios. Mip-NeRF
360 [BMV∗22] comprises four bounded indoor scenes with strong
specular clutter and five unbounded outdoor environments featur-
ing foliage occlusion and high dynamic range lighting. Following
the standard 3DGS protocol [KKLD23], every 8th view is held
out for testing. We also evaluate on the Light-Field dataset [YSH-
WSH16], which features four tabletop objects (torch, statue, bas-
ket, and africa) captured via a motorised gantry. A salient charac-
teristic of this dataset is that the target object remains centred across
all views. This yields stable masks from SAM-2, making it an ideal
testbed for evaluating per-object uncertainty calibration. Addition-
ally, we select the train and truck scenes from Tanks & Tem-

ples [KPZK17]. These large-scale, drone-style outdoor captures are
characterised by long-baseline parallax and strong depth disconti-
nuities. Inspired by the sparse-view protocol of Shen [SAMNR22],
we adopt an intentionally biased and imbalanced camera orbit con-
figuration. Such a setup exacerbates reconstruction artefacts, serv-
ing as a rigorous stress test for our Fisher-based uncertainty mod-
elling. To preserve fine geometric cues, all RGB frames are pro-
cessed at their full original resolution without cropping.

Baselines. We compare our approach against several state-of-
the-art methods that explicitly model uncertainty for next-best-
view (NBV) selection. Our baseline pool includes: ActiveN-
eRF [PLSH22], FisherRF [JLD25], and Bayes’ Rays [GRS∗24].
Furthermore, to ensure a thorough comparison, we include GauSS-
MI [XCZ∗25], a recent information-theoretic method that repre-
sents the state-of-the-art in scene-level active reconstruction. We
also note the concurrent work POp-GS [WAM∗25], which also fo-
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Table 1: Active View Selection on Mip-NeRF360, Tanks&Temples, and LF datasets. "Panoramic" evaluates the full image; "Object-
aware" evaluates only inside the object mask. Rows denote selection policies.

Method
Metrics Mip-NeRF360 LF Tanks & Temples

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Random 17.9140 0.5640 0.4300 19.0857 0.6646 0.2669 15.8784 0.5365 0.3720

ActiveNeRF 17.8890 0.5330 0.4140 21.2263 0.7691 0.1742 16.2918 0.5892 0.2514
BayesRays 18.8120 0.5730 0.4210 21.9232 0.7628 0.1752 16.9322 0.6091 0.3252
FisherRF 20.3510 0.6010 0.3610 23.6450 0.8323 0.1651 17.3684 0.6296 0.3091

GauSS-MI 20.8150 0.6433 0.2710 23.9820 0.8354 0.1628 17.4210 0.6315 0.2425
OUGS 20.6099 0.6453 0.2727 23.7014 0.8058 0.1726 17.2666 0.6125 0.2468

Object-Aware
Random 26.3382 0.9732 0.0266 31.0709 0.9866 0.0227 24.6778 0.9306 0.1349
FisherRF 26.4312 0.9731 0.0276 30.82740 0.9813 0.0231 23.4830 0.9208 0.1396

GauSS-MI 27.3012 0.9764 0.0258 30.9742 0.9830 0.0226 24.9832 0.9318 0.1336
OUGS 29.6099 0.9813 0.0241 32.1856 0.9888 0.0221 26.2533 0.9333 0.1169

cuses on NBV selection. However, as its implementation was not
publicly available during our experimental phase, a direct quanti-
tative comparison was not feasible. All baselines are trained using
their official repositories with default hyper-parameters. To control
for segmentation bias, we feed identical SAM-2 object masks to
every method where applicable. NBV selection is executed with
identical setting to ensure a fair comparison.

Metrics. We evaluate reconstruction quality at two levels: Scene-
Level (Panoramic) and Object-Level. Panoramic metrics, includ-
ing Peak Signal-to-Noise Ratio (PSNR) [GW08] for reconstruc-
tion accuracy, Structural Similarity Index (SSIM) [WBSS04] for
structural fidelity, and Learned Perceptual Image Patch Similarity
(LPIPS) [ZIE∗18] for perceptual quality, are computed on the full,
unmasked image to assess global consistency. Object-Level metrics
are restricted strictly to the masked region of interest. Following
the experimental protocol of [GRS∗24], we calibrate our predic-
tive uncertainty using the Area Under the Sparsification Error curve
(AUSE). For every test image, we compute the per-pixel absolute
error and the corresponding predicted uncertainty, then iteratively
mask out the top t% of pixels (t = 1, . . . ,100) in descending or-
der of predicted uncertainty. Integrating the resulting error curve
yields AUSEMAE and AUSEMSE, where lower values indicate bet-
ter alignment between predicted uncertainty and actual reconstruc-
tion error.

Implementation Details. Following SoTA NBV proto-
cols [WAM∗25], we evaluate on the benchmark datasets described
in Sec. 4.1. The Gaussians are initialised with COLMAP [SF16],
and object masks are obtained from SAM-2 [RGH∗24]. NBV
planning follows FisherRF [JLD25]: four initial views are selected
using the farthest-point strategy, followed by 100 epochs of train-
ing and the addition of a new view chosen by the highest predicted
uncertainty within the object mask. The selection process repeats
until 20 views are reached, after which the model is optimised
for 30k iterations with the default 3DGS schedule. To ensure
practical scalability, OUGS incorporates strategic optimizations
to minimize the computational overhead of view selection. The
main overhead arises during NBV planning, where we evaluate the
explicit Jacobian projection Ju = ∂C(u)/∂θ for candidate views

(Eq. 9); computing this densely for every pixel at full resolution
would be prohibitive. We therefore combine a diagonal FIM
approximation, which reduces covariance storage and propagation
from O(d2) to O(d), with a strided patch-based sampling scheme
during planning: we score candidate views strictly within the
masked region of interest using uniformly sampled 16×16 patches
at a stride of 16 pixels. This strategy ignores vast background
areas and reduces the evaluated pixel count by ∼ 256× (relative
to the mask) while retaining sufficient spatial coverage for reliable
ranking. These choices keep uncertainty tracking lightweight
during training and make Jacobian-based projection practical at
selection time, enabling scalability to large scenes (validated on
TNT sequences with > 1.2M Gaussians).

4.2. Quantitative Results

Our primary quantitative evaluation, presented in table 1, analyzes
reconstruction quality at two levels of granularity: the full scene
and the object of interest.

Scene-Level Panoramic Performance. In the panoramic evalu-
ation, which assesses the entire rendered view, GauSS-MI demon-
strates strong performance due to its entropy-based global objec-
tive. OUGS remains highly competitive, consistently outperform-
ing FisherRF and ranking second only to GauSS-MI in our bench-
marks. This reflects an intentional design choice: we prioritize ro-
bust global consistency to prevent catastrophic background degra-
dation, while strategically reserving the active selection budget for
the target object. Notably, panoramic metrics are computed on the
full image without masking; moreover, all methods receive identi-
cal masks during view selection, so improvements over FisherRF
cannot be attributed to privileged semantic access.

Object-Aware Performance. The decisive advantage of our
framework is revealed in the object-centric evaluation. In this crit-
ical setting, OUGS consistently and substantially outperforms
all baselines, including GauSS-MI, across every dataset, table 2.
Crucially, employing identical SAM-2 masks for all baselines
eliminates segmentation quality as a confounding variable. The re-
sults validate our core hypothesis: while scene-level methods di-
lute their view budget on high-gradient background textures, our
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GT OUGS FisherRF Random

Figure 5: Qualitative result on Mip-NeRF360. From left to right are ground truth, Ours (OUGS), FisheRF, and Random. Each row corre-
sponds to a different scene. 20 views were selected to train a model and render the result on the test set. The blue box circles the object of
our interest, while the red box circles some of the background.

method successfully reallocates the finite view budget to the tar-
get, achieving significantly higher fidelity on the regions of interest.

4.3. Qualitative Results

Figure 4 illustrates the convergence behavior, comparing our ap-
proach against the FisherRF. While both methods track closely in
the panoramic evaluation, OUGS achieves sharp gains in PSNR
and SSIM early in the process by prioritizing object centric views,
whereas FisherRF’s progress on the object is slower due to distrac-
tions from background gradients. In addition, Figure 5 provides a
qualitative comparison on the Mip-NeRF 360 dataset. To specifi-
cally analyze the behavior of uncertainty estimation based on the
Fisher Information Matrix, we focus the visual comparison on our
method, FisherRF, and a random baseline.

The results clearly illustrate the impact of our object-aware strat-

egy. Across all scenes, our reconstructions remain visually clos-
est to the ground truth in the regions of interest (blue boxes). On
the stump scene, for example, the slender bark fibres are sharply
delineated in our result, whereas they are rendered as blurred or
are entirely missing by FisherRF. This reveals the fundamental dif-
ference in FIM-based approaches: FisherRF, however, often pro-
duces a cleaner background (red boxes). This stems from its scene-
level Fisher information score; high-gradient background textures
can dominate the score and steer the next-best-view search away
from the object. Our method, by design, resists this distraction.
Random sampling, while uninformed, spreads views uniformly and
therefore sometimes captures object-centric angles, leading to oc-
casional details that surpass FisherRF, but this comes at the cost
of high variance and no guarantees. The visual evidence strongly
indicates that our method preserves object detail most faithfully.

© 2026 Eurographics - The European Association
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Table 2: Validation of our parameter-centric FIM as a standalone uncertainty estimator. To isolate the quality of our core uncertainty
model, we evaluate it on the full scene without any object-aware masks. The table reports the Area Under the Sparsification Error (AUSE),
a metric for uncertainty quality (lower is better).

africa basket statue torch TNT-Train TNT-Truck

∆MSE↓ ∆MAE↓ ∆MSE↓ ∆MAE↓ ∆MSE↓ ∆MAE↓ ∆MSE↓ ∆MAE↓ MSE↓ MAE↓ MSE↓ MAE↓
ActiveNeRF 1.123 0.958 0.642 0.546 0.818 0.732 1.513 1.246 1.279 1.076 0.994 0.438
Bayes’ Rays 0.445 0.271 0.326 0.284 0.192 0.182 0.342 0.224 0.822 0.689 0.865 0.529
FisherRF 0.181 0.186 0.212 0.225 0.191 0.178 0.247 0.254 0.892 0.632 0.843 0.589
OUGS 0.192 0.187 0.122 0.131 0.181 0.181 0.248 0.217 0.787 0.589 0.651 0.487

GT Render Uncertainty

Figure 6: Qualitative validation of our parameter-centric uncertainty. These results on the TNT-Train and LF-Basket scenes showcase the
remarkable accuracy of our uncertainty estimation. The uncertainty heatmap (right, yellow indicates high uncertainty) precisely localizes
the regions where the final rendering (middle) deviates from the ground truth (left), such as blurry structures and ghosting artifacts. This
strong visual correlation demonstrates the effectiveness of our physically-grounded model in predicting and explaining rendering errors.

The modest artifacts that may appear at the image periphery do not
outweigh the substantial and consistent gains in the target region,
confirming the effectiveness of our object-aware formulation.

4.4. Ablation Study

In this section, we conduct a rigorous analysis to isolate the sources
of our performance gains, verify robustness against segmentation
failures, and quantify EMA update strategy.

Quantitative Validation. As reported in table 2, OUGS
demonstrates robust uncertainty calibration. While perform-
ing on par with FisherRF [JLD25] on simpler, foreground-
centric scenes (e.g., Africa, Torch), OUGS achieves superior cal-
ibration on geometrically complex environments. Notably, on
the challenging TNT-Train and TNT-Truck scenes, our method
reduces AUSE significantly compared to the baselines. This
confirms that our parameter-to-pixel Jacobian formulation
provides a more accurate proxy for reconstruction error, par-
ticularly in complex scenarios. The semantic mask therefore
acts as a spatial filter, but the high-quality uncertainty signal
is intrinsic to our FIM formulation.

Qualitative Visualization. Figure 6 complements these find-

ings. The uncertainty highlighted by our model precisely concen-
trates on background regions that later exhibit blur or ghosting arti-
facts, while high-confidence areas remain artifact-free. This visual
alignment confirms that our parameter-level uncertainty estimation
successfully localizes residual errors in image space.

Source of Gains: Intrinsic Uncertainty Quality A core ques-
tion raised in our analysis is whether our gains stem solely from ob-
ject masking or from a fundamental improvement in uncertainty es-
timation. To isolate the quality of our core uncertainty model from
semantic guidance, we refer to the Area Under the Sparsification
Error (AUSE) evaluated on the full scene without applying any
object masks in table 2.

Robustness to Imperfect Segmentation Since our method
leverages semantic masks for object targeting, a critical question is
how robust OUGS is to segmentation errors. We analyze this in two
dimensions: sensitivity to thresholding parameters and resilience to
severe segmentation noise.

Sensitivity to Probability Thresholds. To investigate how the
quality of the soft mask influences our object-aware uncertainty es-
timation, we simulate mask degradation by varying the threshold
value from 0.1 to 0.9 and plot the corresponding object level AUSE
scores. Pixels with probabilities above the threshold are considered

© 2026 Eurographics - The European Association
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Figure 7: Sensitivity to mask quality. We analyze object-level AUSE (lower is better) by varying the mask binarization threshold. The clear
basin of stability indicates that OUGS is robust to a wide range of segmentation hyperparameters and effectively utilizes the mask to filter
background clutter without requiring pixel-perfect thresholds.

part of the object. At low threshold values (left side of the plot),
the mask includes more unwanted background regions, leading to
suboptimal view selection and higher (worse) AUSE scores. As the
threshold increases, the mask becomes more focused on the ob-
ject, improving performance and reaching an optimal AUSE around
0.5—where the mask best isolates the object while excluding back-
ground clutter. Beyond this point, further increases in the threshold
aggressively remove less salient object regions, slightly degrading
performance as informative areas are excluded.

Robustness to Segmentation Noise. To evaluate robustness un-
der realistic segmentation failures, we stress-test both the view-
selection policy and the final object reconstruction on TNT–Truck
by injecting three controlled perturbations into the planning masks:
(i) Under-segmentation, which removes portions of the true fore-
ground; (ii) Over-segmentation, which introduces spurious fore-
ground blobs in the background; and (iii) Boundary Blur, which
dilates the mask to include surrounding clutter.

Figure 8: NBV robustness under segmentation noise (TNT–
Truck). Selected-view object PSNR (lower is better) versus noise
intensity for Drop (left), Ghost (center), and Boundary Drift (right).

Figure 8 analyzes one-step selection robustness via Selected
View Object PSNR (lower is better), as an effective NBV pol-
icy should select views where the object is currently worst recon-
structed. Under Under-segmentation (left), both methods degrade

Table 3: Robustness of object-aware reconstruction on TNT un-
der degraded object masks during NBV planning.

Method PSNR↑ PSNR Drop↓ SSIM↑ LPIPS↓

I. Clean masks (ideal)
FisherRF 23.48 — 0.921 0.140
OUGS (ours) 26.25 — 0.933 0.117

II. “Ghost” noise (false positives)
FisherRF 20.15 3.33 0.845 0.210
OUGS (ours) 24.05 2.20 0.895 0.152

III. “Boundary drift” (coarse edges)
FisherRF 21.60 1.88 0.872 0.185
OUGS (ours) 24.45 1.80 0.902 0.141

similarly—missing foreground pixels reduce evidence for both
scoring rules. Under Over-segmentation (center), the baseline in-
creasingly selects already well-reconstructed views (higher PSNR),
wasting view budget on background artifacts. Under Boundary
Blur (right), this gap widens: as masks expand into clutter, the
baseline shifts toward “easy” views while OUGS remains stable,
demonstrating robustness to coarse boundary errors.

Table 3 confirms this selection stability translates to end-to-end
robustness. Under Over-segmentation, FisherRF drops 3.33,dB
by overfitting to background artifacts, while OUGS degrades only
2.20,dB. This resilience stems from Eq. 9: our uncertainty score
combines semantic mask weights with physical uncertainty from
the Jacobian. False positive regions typically have low geometric
uncertainty, suppressing their contribution and acting as a physics-
based safeguard against mask noise.

Reliability in Fully Autonomous Settings. A key challenge
in object-centric reconstruction is obtaining object masks for un-
seen candidate views. Beyond offline SAM2-based propagation, we

© 2026 Eurographics - The European Association
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Table 4: Quantitative comparison across four scenes of the LF dataset. We compare our Warp-based mask generation against ground-
truth SAM2 masks (GT). Metrics are evaluated on object regions after training with 20 views for 30k iterations.

africa basket statue torch

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

Online FisherRF 24.80 0.975 0.018 24.95 0.958 0.048 27.60 0.972 0.032 22.60 0.958 0.029
Offline FisherRF 32.45 0.991 0.011 29.35 0.973 0.038 31.85 0.983 0.024 29.66 0.978 0.020
Online OUGS 27.94 0.988 0.014 27.35 0.968 0.041 30.02 0.981 0.023 25.63 0.969 0.025
Offline OUGS 33.82 0.996 0.010 30.65 0.982 0.036 33.25 0.989 0.022 31.02 0.988 0.019

evaluate an online depth-guided warping strategy that uses the cur-
rent 3DGS geometry to transfer masks to unvisited viewpoints, but
its quality is limited by view coverage and depth fidelity. Table 4
shows that this online variant underperforms the SAM2 baseline;
the gap is most pronounced at the beginning of scanning, where
limited view coverage yields noisier depth-warped masks and con-
sequently less effective NBV decisions. Although mask quality im-
proves over NBV iterations as coverage increases, the view budget
consumed early cannot be recovered, leading to lower final recon-
struction quality. This trend aligns with Table 3, where degraded
masks (e.g., projection-induced boundary drift due to geometric er-
rors) measurably harm planning; we therefore recommend high-
quality mask acquisition (e.g., SAM2) whenever available.

Analysis of the EMA Update Schedule

Our FIM approximation relies on an online update of the diag-
onal entries using an EMA of squared gradients. A key design
choice is our decaying momentum schedule for the EMA param-
eter, αt = 0.951.5t/T , which prioritizes stability early in training
and faster adaptation later on. To validate this choice, we conduct
an ablation study comparing our proposed schedule against sim-
pler alternatives with a constant momentum. We evaluate the final
object-aware PSNR on the LF scene after 20 selected views.

Table 5: Ablation on the EMA update schedule, evaluated on the
LF-Statue scene. Our decaying momentum strategy outperforms
all constant momentum alternatives.

EMA Schedule Strategy Object-Aware PSNR (dB) ↑

No EMA (Instantaneous) 29.52
Low Momentum (αt = 0.90) 31.63
Medium Momentum (αt = 0.95) 31.91
High Momentum (αt = 0.99) 32.04

Ours (Decaying Momentum) 32.18

The results, presented in table 5, confirm the effectiveness of
our proposed strategy. A constant high momentum (αt = 0.99) is
overly cautious, smoothing too much and preventing the model
from adapting quickly enough, resulting in lower PSNR. Con-
versely, a constant low momentum (αt = 0.9) is too reactive to
noisy gradients, leading to an unstable FIM estimate and the worst
performance. Our decaying schedule strikes the optimal balance,
achieving the highest PSNR. This validates that our carefully de-
signed "slow-start, fast-finish" update strategy is crucial for ro-
bustly estimating the FIM online and contributes significantly to
the final reconstruction quality.

5. Limitations and Future Work

While our framework demonstrates a significant advancement in
object-centric active reconstruction, we acknowledge several limi-
tations that open up exciting avenues for future research. We em-
ploy SAM-2 as an offline oracle to simulate reliable masks, decou-
pling planning efficacy from segmentation failures. Consequently,
our method’s effectiveness is contingent upon the availability and
quality of a semantic mask for the object of interest. While our ab-
lation study (Sec. 4.4) demonstrates robustness to moderate mask
degradation, significant segmentation errors inevitably degrade re-
construction quality; we observe that severe noise such as spurious
Ghost regions can cause performance drops comparable to base-
lines. Additionally, while we extend this method to handle online
mask estimation (e.g., via depth image warping), achieving high-
fidelity reconstruction without oracle masks still remains a qual-
ity challenge. While we present a theoretical extension to multiple
objects in appendix, which is further detailed in the Supplemen-
tary Material, the experimental evaluation in this work focuses on
single-object scenarios; empirical validation of multi-object active
reconstruction and optimal weighting strategies remain to be ex-
plored. Furthermore, our method approximates the full Fisher In-
formation Matrix with its diagonal entries, assuming independence
between different parameters of a Gaussian—a strong simplifica-
tion that could be relaxed with more structured FIM approxima-
tions.

6. Conclusion

We introduced OUGS, an object-aware uncertainty estimation
framework for active view selection in 3DGS. Our work presents a
fundamental shift in how uncertainty is modeled for explicit repre-
sentations. By deriving uncertainty directly from the physical pa-
rameters of the 3D Gaussian primitives, we establish a more prin-
cipled and interpretable link between the 3D scene representation
and the rendered 2D image. Our method projects this parameter-
level covariance into pixel space and, by coupling it with seman-
tic masks, produces an uncertainty score that effectively disentan-
gles the object of interest from its environment. This is enabled by
an efficient diagonal FIM update scheme that makes the approach
computationally tractable. When integrated into a next-best-view
loop, our method consistently and substantially outperforms state-
of-the-art baselines in the critical task of object-centric reconstruc-
tion, achieving sharper results under the same view budget. No-
tably, our underlying uncertainty model also proves to be highly
competitive for global scene reconstruction. Ultimately, these re-
sults underscore the importance of disentangling object-level un-
certainty from background clutter for efficient, high-fidelity active
reconstruction.

© 2026 Eurographics - The European Association
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Appendix A: Jacobian–Covariance Propagation

Let C(u;θ) ∈ R3 denote the rendered RGB colour at pixel u under
parameters θ ∈ Rd , and let θ

⋆ be the MAP estimate after optimisa-
tion. We model local parameter uncertainty via δθ := θ− θ

⋆ with
mean E[δθ] = 0 and covariance Σ = E[δθδθ

⊤].

Second-order expansion. A Taylor expansion of C(u;θ) around
θ
⋆ yields

C(u;θ) =C(u;θ
⋆)+ Ju δθ+

1
2

δθ
⊤Hu δθ+O(∥δθ∥3), (10)

where

Ju :=
∂C(u;θ)

∂θ

∣∣∣∣
θ⋆

∈ R3×d and Hu :=
∂

2C(u;θ)

∂θ2

∣∣∣∣∣
θ⋆

∈ Rd×d .

First-order (Jacobian) covariance. For uncertainty propagation
we use the standard first-order approximation, which is accu-
rate when δθ is small (equivalently, when Σ is small in opera-
tor/Frobenius norm). Retaining only the linear term in (10) gives

C(u;θ) ≈ C(u;θ
⋆)+ Ju δθ. (11)

Taking the second central moment yields the classic Jacobian–
covariance law:

Var
[
C(u;θ)

]
≈ Ju ΣJ⊤u . (12)

Intuitively, Ju acts as a sensitivity map: its element [Ju]kl =
∂Ck(u;θ

⋆)/∂θl quantifies how the l-th parameter perturbs the k-th
colour channel at pixel u, and (12) weights these sensitivities by
parameter variance.

Remainder control. Including the quadratic term in (10) con-
tributes corrections of higher order in Σ. Under mild smoothness,
one obtains a bound of the form∥∥Var[C(u;θ)]− JuΣJ⊤u

∥∥ ≤ cu ∥Σ∥2 + O(∥Σ∥3), (13)

Hence the approximation error vanishes as the Gaussian parameters
become well-constrained.

Appendix B: FIM Approximation and Online Update

Fisher Matrix under Gaussian Image Noise. Assume indepen-
dent Gaussian image noise ε(u) ∼ N (0,σ2I3) so that Cgt(u) =
C(u;θ) + ε(u). The (per-iteration) negative log-likelihood is the
photometric error

ℓt(θ) =
1

2σ2 ∑
u∈Ωt

∥∥Cpred,t(u;θ)−Cgt,t(u)
∥∥2

2, (14)

where Ωt denotes the set of sampled pixels (or patches) at step t.
Let rt(u) :=Cpred,t(u;θ)−Cgt,t(u) be the residual. Then

∇θℓt =
1

σ2 ∑
u∈Ωt

J⊤u rt(u). (15)

The Fisher information matrix (FIM) is defined as the noise ex-
pectation of the outer product of the log-likelihood gradients:

I = Eε

[
∇θℓt ∇θℓ

⊤
t
]
. (16)

Under the i.i.d. Gaussian noise assumption, cross-terms vanish and
E[rt(u)rt(u)⊤] = σ

2I3, yielding

I =
1

σ2 ∑
u∈Ωt

J⊤u Ju. (17)

Equivalently, stacking per-pixel Jacobians row-wise into J ∈
R(3|Ωt |)×d gives I = σ

−2J⊤J. This dense d×d matrix captures
parameter correlations but is prohibitively expensive to store or in-
vert at scale.

Diagonal Approximation and Damping. A local Laplace /
Cramér–Rao approximation gives the posterior covariance

Σ ≈ σ
2(I+λId

)−1
, (18)

where λ > 0 is a small Tikhonov damping term for numerical sta-
bility. To obtain a tractable estimate, we retain only the diagonal
Fisher entries:

Idiag = diag(I)= 1
σ2 diag

(
∑

u∈Ωt

J⊤u Ju

)
, Σ≈σ

2(Idiag+λId
)−1

.

(19)
This approximation discards off-diagonal correlations while pre-
serving parameter-wise uncertainty magnitudes, which is sufficient
for our pixel-space propagation through Ju.

EMA Update and Object-Aware Pixel Covariance. During
optimisation we maintain an online estimate of the diagonal Fisher
via an exponential moving average (EMA) of squared gradients:

I( j)
t,i = αt I( j)

t−1,i +(1−αt)
[
∇

θ
( j)
i
ℓt
]2
, αt = 0.951.5 t/T . (20)

Here I( j)
t,i denotes the ( j, j) entry (diagonal element) for the j-th

parameter of Gaussian i, and T is the total number of optimisation
steps. The schedule starts at α0 = 1 and decays smoothly, gradu-
ally increasing the contribution of new gradient information as op-
timisation stabilises. With the diagonal Fisher approximation, the
pixel-space covariance follows from (12). Introducing a soft object
mask Mk(u) ∈ [0,1] yields the object-aware covariance used in the
main paper:

ΣC,k(u) = (Mk(u))
2 Ju

(
σ

2(Idiag
t +λId

)−1
)

J⊤u . (21)

Although Idiag
t is diagonal, Ju generally has nonzero entries across

many parameters, so the projection couples parameter effects when
forming pixel-space uncertainty. Summing tr(ΣC,k(u)) over pixels
with Mk(u) > 0 produces an object-centric uncertainty score that
drives next-best-view selection.

Appendix C: Multi-Object Extension

While this paper focuses on single-object active reconstruction, the
framework naturally extends to multiple targets. For K objects with
masks Mk(u) and covariances ΣC,k(u), the aggregated score is:

Score(v) =
K

∑
k=1

wk ·Trace
(∫

Ω

ΣC,k(u)du
)
, (22)

where weights wk satisfy ∑k wk = 1. The computational complex-
ity remains O(K · d) under diagonal FIM approximation. Deter-
mining optimal weighting strategies for specific applications (e.g.,
task-specific priorities, adaptive updates) represents an interesting
direction for future work.
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