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ABSTRACT

Accurate annotation of endoscopic videos is essential yet
time-consuming, particularly for challenging datasets such
as dysplasia in Barrett’s esophagus, where the affected re-
gions are irregular and lack clear boundaries. Semi-automatic
tools like Segment Anything Model 2 (SAM2) can ease
this process by propagating annotations across frames, but
small errors often accumulate and reduce accuracy, requiring
expert review and correction. To address this, we systemati-
cally study how annotation errors propagate across different
prompt types, namely masks, boxes, and points, and propose
Learning-to-Re-Prompt (L2RP), a cost-aware framework
that learns when and where to seek expert input. By tuning a
human-cost parameter, our method balances annotation effort
and segmentation accuracy. Experiments on a private Bar-
rett’s dysplasia dataset and the public SUN-SEG benchmark
demonstrate improved temporal consistency and superior
performance over baseline strategies.

Index Terms— Interactive segmentation, Barrett’s esoph-
agus, Human-Al collaboration

1. INTRODUCTION

Developing robust AI models for endoscopic video analysis
depends critically on large volumes of high-quality expert an-
notations. However, creating such datasets for less common
conditions, such as dysplasia in Barrett’s esophagus, remains
exceptionally challenging due to the scarcity of expert re-
sources and the substantial time required for annotation. The
lesions are often irregular and poorly defined, making precise
annotation especially difficult.

Moving away from the traditional approach of annotat-
ing every frame, expert annotation can be significantly accel-
erated using Interactive Video Object Segmentation (iVOS)
methods. With iVOS models such as SAM2 [1], experts anno-
tate only a few key frames, while annotations for the remain-
ing frames are automatically propagated. These systems al-
low experts to interact through different prompt types, such as
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Fig. 1. Example Barrett’s video showing mask propagation
from the initial prompt and after an L2RP-suggested correc-
tion, with improved annotation quality.

masks, boxes, or points that vary in precision and effort. How-
ever, even minor segmentation errors caused by motion, light-
ing changes, or occlusion can accumulate over time, leading
to annotation drift and requiring frequent expert correction
[2]. Yet, how different prompt types affect this temporal error
propagation remains unclear. Understanding these dynam-
ics is essential for designing systems that effectively balance
segmentation accuracy against the time and effort demands
placed on human experts.

In this paper, we study how segmentation errors propagate
across different prompt types using a curated private Barrett’s
esophagus video dataset. Building on these insights, we in-
troduce Learning-to-Re-Prompt (L2RP), a cost-aware frame-
work for human—AlI collaboration in iVOS. As illustrated in
Fig. 1, L2RP learns an adaptive policy that determines when
to request expert input and which frame to correct, aiming
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to achieve the best segmentation accuracy with minimal ex-
pert intervention. This joint formulation bridges temporal er-
ror modeling and cost-aware decision making in interactive
video segmentation. The key contributions of this work are
threefold:

* A systematic analysis of how segmentation errors prop-
agate across different prompt types—masks, boxes, and
points on a curated Barrett’s esophagus dataset

* A cost-aware framework, L2RP, that learns an adaptive
policy to decide when and where expert intervention
should occur.

» Experimental results showing that L2RP improves seg-
mentation accuracy while reducing expert workload on a
private Barrett’s dataset and a public endoscopic dataset

2. RELATED WORK

Advances in Al have achieved expert-level diagnostic ac-
curacy when used alongside clinicians [3, 4] in Barrett’s
esophagus surveillance, aiding endoscopists in detecting
early neoplasia and preventing progression to esophageal
cancer [5]. Most existing systems rely on still-image an-
notations, as frame-level labeling of endoscopic videos is
prohibitively time-consuming. To mitigate this, recent stud-
ies have developed scalable annotation pipelines built around
iVOS models. For instance, EVA-VOS [6] selects high-error
frames for expert correction but still overlooks the balance
between segmentation gain and annotation effort.

In parallel, the Learning-to-Defer (L2D) paradigm has
emerged as a principled framework for optimizing Hu-
man—Al collaboration by enabling models to selectively de-
fer predictions to human experts when uncertainty is high
[7, 8,9, 10, 11]. However, existing L2D methods primarily
address static decision-making and remain unexplored in spa-
tiotemporal settings, such as video segmentation, where the
model must determine optimal correction points that max-
imize segmentation accuracy while minimizing annotation
effort.

To bridge this gap, we extend L2D to a propagation-aware
deferral setting and propose the L2RP framework that learns
when to query correction prompts during mask propagation.
Unlike traditional L2D, where deferral denotes escalation
to a more capable expert, L2ZRP assumes equivalent compe-
tence between prompts and focuses on identifying optimal
re-prompt points to recover from propagation drift, achieving
higher segmentation accuracy with minimal human interven-
tion.

3. METHOD

3.1. Preliminaries

Let V = {I;}]_, denote a Barrett’s esophagus endoscopic
video sequence containing 7+1 frames, where each frame

I; € REXWX3 represents a colour image of the mucosal sur-
face. Every frame is annotated with a ground-truth binary
mask M; € {0,1}7*Wx1 \where pixels labelled 1 corre-
spond to Barrett’s dysplasia regions and 0 to normal mucosa
or background.

An interactive video object segmentation model S(-) pre-
dicts a segmentation mask conditioned on both the video and
user-provided prompts. The annotator first supplies an initial
prompt py (mask, box, or point) on the first frame I to outline
the regions of dysplasia. The model then propagates this an-
notation through the remaining frames, producing predicted
masks M (©) = S(V, py), where each frame-level mask ]\;[t(o)
represents the propagated segmentation for frame ¢.

As the video progresses, propagated segmentation quality
may deteriorate due to tissue motion, lighting changes, or en-
doscope movement. When such drift occurs, the expert anno-
tator can provide a correction prompt at frame ¢ = §, denoted
ps. The iVOS model would then use all prompts so far to re-
propagate segmentation, M (*%9) = § (W, {po, ps}), across the
sequence, where Mt(o’é) denotes the refined mask for frame ¢.

3.2. Learning-to-Re-Prompt

To determine when a new correction should be requested,
we introduce a deferral model Dy(-) that learns to decide
whether to continue with the current segmentation or to defer
to the annotator for a new prompt. The deferral model takes
as input the endoscopic video V together with the propagated
masks M (©) generated from the initial prompt pg, and outputs
a discrete prediction d = Dg(V, M), d € {0,1,2,...,T}.
If d = 0, the model chooses not to defer and accepts the prop-
agated masks from the initial prompt pg as final. Conversely,
if d = k for some k € {1,2,...,T}, the model defers to
the annotator at frame k, requesting a new correction prompt
Pk, after which the segmentation is re-propagated across the
video to refine the overall mask quality.

The decision d is evaluated through a discrete, non-
differentiable loss formulation inspired by the L2D frame-
work while remaining specific to interactive video segmenta-
tion. The loss is defined as

T
Laes(d, V, M) = Id = 0] cprop + > I[d = K] &), (1)
k=1

where I[-] denotes the indicator function. If d = 0, the
model continues with the current segmentation and incurs the
cost of accepting the initial propagation, cprop = Apase + 00,
If d = k for some k € {1,2,...,T}, the model defers to the
annotator at frame k, requesting a new correction prompt py,
and incurs the cost of correction, ¢\ = Xpase + Acorr + £OF).
Each ¢(-) measures the segmentation error of the predicted
masks M for the dysplastic regions across the video, reflect-
ing the overall propagation quality. The constants Ap,e €
Rsg and Aoy € Ry denote, respectively, the unavoidable



cost of the initial prompt py and the additional cost of re-
questing a new correction during propagation. Since Apage
is common to both cases, it is omitted, while A\, acts as a
tunable factor that balances segmentation accuracy with the
additional effort required from the annotator.

Since the loss in Equation 1 is non-differentiable, we
adapt the surrogate loss used in Learning-to-Defer studies [9]
to our interactive video segmentation task for end-to-end
training.

We keep the interactive video segmentation model S(-)
fixed and train only the deferral model Dy(-). The defer-
ral model takes as input the endoscopic video V together
with the segmentation masks M(©) propagated from the ini-
tial prompt, and outputs a series of scores Dy(V, M (0)) =
[d1,ds,...,dr]. Each score di, € R represents how suitable
it is to request a correction at frame k. To also allow the
model to decide not to request a correction, we include an
additional “no-deferral” option indexed by £ = 0 with a fixed
score dy = 0.

The scores are then adjusted by negating their values: we
set dy = 0 for the non-deferral option and di, = —dj, for
all k = 1,...,T. This means that smaller scores indicating
a stronger preference to defer become larger after negation.
As a result, the model treats frames that are more suitable
for deferral as having higher confidence, allowing standard
training losses to learn this behavior effectively. Accordingly,
the surrogate loss can be defined as,

T
LLZRP(dv Vv M(O)) = Eprop (b(czv 0) + Z Eg(ljr)r ¢(J7 k) (2)
k=1

where ¢; = 1 —¢;, and ¢(d, k) is a standard surrogate loss
used for multiclass classification. In our study, we adopt the
Mean Absolute Error (MAE) as the surrogate loss ¢ for its
stable gradients and robustness to potential class imbalance
between deferral and non-deferral cases. The MAE-based
surrogate loss can then be expressed as,

1

Lisgpmae(d, V, M) = Gpp [1 — ——F——
( ) Cp P 1 + ZZTZI e*di

., 3)
+3 el [1 _ e_d"}
corr T iy
k=1 L+ e

During inference, the deferral model selects the action
based on these scores: if dy < min;<y<r di, the model con-
tinues without deferral; otherwise, it defers at frame k* =
arg min; <x<7 di, where a new correction prompt py- is re-
quested to refine the segmentation.

While Dy is originally defined over the entire video V and
its propagated masks MO in practice, we evaluate it only
on an evenly spaced subset of frames .7 to avoid redundancy
from similar neighboring frames. Each sample therefore in-
cludes {Ij, M ]io) : k € J}, keeping the temporal context
intact while reducing computation.
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Fig. 2. Mean Dice Loss averaged across all videos at each
frame, showing how segmentation error changes over time
for different prompt types. Smoothed (20-frame window).
Shaded regions indicate 95% confidence intervals.

4. EXPERIMENT SETTING

Datasets: The in-house Barrett’s Esophagus dataset in-
cludes 42 videos from 16 patients, with expert pixel-level
dysplasia annotations. Consecutive 100-frame clips were
extracted using a sliding window (stride=2), yielding 7,599
clips. We evaluate the dataset using four-fold cross-validation
with patient-level separation. The SUN-SEG dataset [12, 13]
contains 1,106 colonoscopy videos for polyp segmentation.
Following its original train and test-hard splits, we created
4,280 training and 2,500 testing clips using the same sam-
pling method described above.

Implementation and Training: We use SAM2 [1] as the
base segmentation model S(-) with two memory-attention
layers. The deferral model Dy(-) is a R(2+1)D network [14]
pre-trained on the Kinetics-400 dataset [15]. For each video,
the model processes 10 frames (|.7|=10) with their corre-
sponding propagated masks from the initial prompt. Training
uses the Adam optimizer (Ir=1x10~7, batch=16) for 1000
epochs on an NVIDIA A100 (40 GB). We evaluate three
types of interactive prompts: mask, box, and point. Masks
precisely trace the dysplasia region, boxes are drawn tightly
around its visible boundary, and point prompts consist of
three clicks per frame. The same prompt type is used for both
the initial and correction stages for consistency.

Baselines: We compare the proposed L2RP framework with
four baseline strategies: Initial Propagation, and three frame-
selection strategies—Random, Midpoint, and an adaptation
of EVA-VOS [6]. In the Random strategy, correction frames
are selected arbitrarily, whereas the Midpoint strategy always
defers to the temporal center of the video. For EVA-VOS,
only its frame-selection rule is used to determine when to re-
quest a correction.



Method Barrett’s

SUN-SEG

Mask Box

Mask Box Point

Initial Propagation 0.7371 £+ 0.0383 0.6323 £ 0.0645

Midpoint 0.7988 £+ 0.0196 0.6448 £0.0617
Random 0.7899 £ 0.0241 0.6459 £ 0.0604
EVA-VOS [6] 0.8244 £ 0.0234 0.6537 £ 0.0565

L2RP (A¢orr = 0.01) 0.8436 £0.0188"** 0.6642 £+ 0.0568"**

0.5477 £ 0.0665
0.5928 £ 0.0664
0.5823 £ 0.0648
0.6184 £ 0.0647
0.6249 £+ 0.0657""*

0.5466 £ 0.0225 0.5250 £ 0.0820 0.4726 £ 0.0595
0.6820 £ 0.0190 0.5363 £ 0.0560 0.5686 £ 0.0532
0.6697 £ 0.0200 0.5503 £ 0.0560 0.5421 £ 0.0508
0.6882 £ 0.0244 0.5701 £ 0.0341 0.5838 £ 0.0498
0.7307 +0.0076"** 0.5825 +0.0186""* 0.6097 + 0.0281***

Table 1. Deferral strategy comparison: Dice score (mean =+ std) across prompt types on Barrett’s and SUN-SEG datasets.
** Statistically significant improvement over EVA-VOS (paired Wilcoxon signed-rank test, p < 1076).

S. RESULTS AND DISCUSSION

5.1. Difference in Prompt Types and Error Propagation

Fig. 2 shows how segmentation errors gradually increase as
annotations are propagated across video frames. When us-
ing mask prompts, the model starts with the most accurate
segmentation, but the error grows quickly as the video pro-
gresses, mainly because detailed boundaries are more sensi-
tive to small appearance changes and camera movement. Box
prompts begin with slightly lower accuracy, but their errors
rise more gradually, while point prompts remain the most
stable over time. Interestingly, the errors of box and point
prompts converge toward similar levels in later frames, indi-
cating that their long-term propagation quality becomes com-
parable. Overall, detailed masks provide the best initial per-
formance but degrade faster, whereas simpler prompts remain
steadier across the sequence.

This suggests that while detailed mask annotations can
produce very accurate results, they potentially require fre-
quent corrections and therefore higher expert effort. In con-
trast, simpler prompts, especially points, provide more con-
sistent results with much less manual work. When expert time
is limited, using points may offer the best balance between ac-
curacy and annotation effort.

5.2. Efficient Expert Intervention through L2RP

As shown in Table 1, L2RP achieves the highest mean Dice
scores for all prompt types, showing consistent and robust
gains over baseline methods. Compared to propagation with-
out correction, it yields substantial relative improvements of
approximately +14.5% on Barrett’s and +33.7% on SUN-
SEG for mask prompts, demonstrating its effectiveness in
mitigating temporal error drift. While Midpoint and Random
strategies offer only limited benefits, as they fail to adapt to
segmentation errors, the EVA-VOS baseline performs com-
petitively but remains below L2RP.

For Barrett’s dysplasia annotation workflows, these re-
sults are particularly meaningful. Given the limited budget
for expert intervention, L2RP effectively optimizes the trade-
off between intervention cost and propagation accuracy. By
selectively identifying the most informative frames for correc-
tion, it maintains high and temporally consistent segmentation
quality, ensuring that each expert correction yields a measur-

able improvement in performance. This adaptive mechanism
leads to a more efficient balance between human effort and
model accuracy in real clinical annotation settings.

5.3. Clinical Interpretation and Practical Use of A\,

In clinical data annotation workflows, the correction cost pa-
rameter . represents the relative effort or time penalty of
requesting additional human input to reduce error propaga-
tion. A smaller )\ encourages more frequent deferrals, suit-
able when expert intervention is inexpensive or when propa-
gated errors escalate quickly, such as in video clips with high
motion or deformation. Conversely, a larger A makes the
model more conservative, prompting corrections only when
predicted masks substantially deviate from lesion boundaries.
This setting is preferable in high-throughput review scenarios
where expert time is constrained.

Empirically, the model exhibits predictable sensitivity to
this parameter. For mask prompts, Dice performance gradu-
ally decreases as A\ increases—0.8436 — 0.8279 — 0.8015
for A\eorr = 0.01,0.06, 0.08, indicating that higher correction
costs lead to fewer deferrals and consequently lower segmen-
tation accuracy. In practice, Acor can be tuned on a small vali-
dation set to balance annotation effort and accuracy, enabling
users to adapt the model to their available resources.

6. CONCLUSION

In this paper, we present an analysis of annotation error prop-
agation in interactive video segmentation and propose a novel
L2RP framework that adaptively determines when to seek ex-
pert input. Our experiments showed that while mask prompts
yield the highest initial accuracy, they degrade fastest over
time, whereas point prompts offer the best balance between
stability and annotation effort. By dynamically selecting in-
formative frames for correction, L2RP effectively mitigates
temporal drift and optimizes the trade-off between segmenta-
tion accuracy and human effort. Evaluation on both private
and public datasets demonstrated its generalizability beyond
Barrett’s videos. Overall, explicitly modeling temporal error
dynamics and annotation cost enables the design of practical,
annotation-efficient systems for expert-guided Barrett’s dys-
plasia segmentation.
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