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Fig. 1: Experiment setup.

Abstract—Postural Instability Theory (PIT) proposes that individuals who are naturally unstable on their feet are more susceptible to
cybersickness. We hypothesize that this relationship extends to locomotive VR, such that people who exhibit greater instability when
walking without VR will also be more susceptible to cybersickness in a locomotive VR setup. To test this, we performed an analysis
on participants’ natural walking kinematics alongside their cybersickness responses and kinematic patterns during mobile VR use.
Our results showed that the vertical movement of the Center of Mass in pre-VR walking showed promise for identifying individuals
susceptible to cybersickness. Spatial stability metrics emerged as stronger predictors of cybersickness than time-series measures,
suggesting that spatial characteristics of gait may be more informative indicators of susceptibility in mobile VR contexts. These findings
highlight the importance of accounting for baseline postural stability when designing and personalizing mobile VR experiences.

Index Terms—Cybersickness, Postural Instability, Center of Mass, Virtual Reality, Kinematic Analysis, Machine Learning

1 INTRODUCTION

The growth in popularity of virtual reality and the affordability of its
tracking devices has made the use of body movements increasingly
popular for enhancing the user experience within current virtual envi-
ronments. It has been theorized that full-body interaction will decrease
the mismatch between the visual and vestibular systems, thereby reduc-
ing the conflict users experience during VR sessions [28], which in turn
leads to a reduction in symptoms of cybersickness [4, 44]. However,
even when interacting with walking environments, users still experi-
ence symptoms of cybersickness [41] such as discomfort, headaches,
or nausea [51].

The study of cybersickness has led to the development of multiple

• Carlos Tirado is with the Discipline of Design at the School of Architecture,
Design and Planning, University of Sydney. E-mail:
carlos.tiradocortes@sydney.edu.au.

• Yiheng Chi is with the School of Mathematical Sciences, Adelaide University.
E-mail: chiyiheng268@gmail.com.

• Juno Kim is with the Sensory Process Research Laboratory at the University
of New South Wales. E-mail: juno.kim@unsw.edu.au.

• Hsiang-Ting Chen is with Adelaide University. E-mail:
tim.chen@adelaide.edu.au.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

theories that describe the phenomenon and its causes [31]. Theories
such as the sensory conflict theory [17, 20] and the postural instability
theory [36] have been among the most prominent theories explaining
the appearance of sickness in VR participants. A previous study hypoth-
esized that, at least during mobile environments, postural instability
theory is more relevant [52].

Postural instability theory (PIT) states that prolonged exposure to
postural instability contributes to the generation of symptoms associated
with motion sickness. One key proposal of PIT is that individuals who
are naturally unstable on their feet will also be more susceptible to
cybersickness [27, 32, 36, 46].

Studies analyzing postural instability have primarily recorded par-
ticipants in non-locomotive contexts (standing or sitting), commonly
measuring center of pressure (CoP) [7, 18, 27], though some have also
employed motion capture of head and torso movements [47] or head
tracking during active VR tasks [1]. These studies consistently find
that spatial and temporal CoP characteristics differ between "Sick" and
"Not Sick" groups, with postural instability detectable before users
report any symptoms.

However, few studies have examined the relationship between pre-
VR walking, VR walking, and cybersickness. Previous research has
used non-VR walking as a baseline for kinematic [51] and physio-
logical [52] measurements during VR experiments. Yet, none have
systematically analyzed how baseline locomotion performance influ-
ences subsequent VR behavior. This gap represents an underexplored
area in understanding how natural movement characteristics might
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predict responses during VR interaction.

1.1 Paper Contributions
This paper extends PIT to mobile VR by hypothesizing and showing
that individuals with greater natural walking instability in non-VR
conditions experience heightened susceptibility to cybersickness in
mobile VR.

Our methods analyzed walking patterns of users before and during
the interaction with a VR walking scenario. We calculated the displace-
ment in three directions: lateral, forward, and vertical, as well as the
total magnitude of displacement of the center of mass from a predicted
path. This displacement was calculated for both the Center of Mass
(CoM) and the head movement.

We analyzed both the spatial and temporal characteristics of the mul-
tiple displacements of the CoM and head movement. We hypothesized
that, similar to the non-locmotive experiments reported in previous
works, we would observe differences in the No-VR portion of the ex-
periment between the group that experienced cybersickness and the
group that did not [43].

This paper makes multiple contributions. First, to the best of our
knowledge, this is the first study to analyze the walking patterns of
participants before they enter VR and draw conclusions on how these
relate to the postural instability theory. We aim to analyze how nat-
ural walking data can help us understand the participants’ developed
cybersickness.

Second, we conducted a time-series analysis of walking patterns in
users experiencing cybersickness, similar to previous postural instabil-
ity studies [7, 27]. We contribute by analyzing the temporal dynamics
of walking patterns to understand how sway evolves relative to cyber-
sickness onset. Our methodological contribution includes the expected
path methodology for measuring locomotion instability and its util-
ity in establishing the relationship between movement deviation and
cybersickness symptoms.

Finally, our third contribution tries to understand which of the met-
rics contributes the most towards the development of cybersickness. To
address this, we employed a logistic regression analysis to determine
which of these metrics performs better at identifying users who suffer
from cybersickness and which displacement direction contributes most
to its onset.

2 RELATED WORK

2.1 Non-Locomotive Baseline Measures
A subset of postural instability studies aims to understand the relation-
ship between postural sway and symptoms associated with different
types of sickness, like motion sickness or cybersickness. One of the
most common methods is measuring participants’ postural sway before
exposure to visual stimuli that can trigger sickness symptoms [46].
These studies typically employ a paradigm in which participants’ pos-
tural activity is recorded during non-locomotive tasks (such as standing
or sitting) to measure their natural level of instability. Then interact
with a virtual environment that induces cybersickness through visually
induced motion. Later, researchers investigated the spatial and temporal
parameters of the center of pressure (CoP) to understand movement
patterns in both symptomatic and asymptomatic groups [42].

This approach has been widely adopted, with most contributions to
postural instability theory employing similar methodologies [1,7,27,53].
These studies commonly analyze postural activity metrics including
center of pressure measurements [1, 7, 27, 53] and motion capture body
segments [47] to understand postural instability and cybersickness.
Work by Weech et al. [53] extended the pre-VR prediction approach,
showing that balance measures accounted for 37% of the variance in
cybersickness, though measurements remained limited to static stand-
ing.

Arcioni et al. [1] reported that anterior-posterior CoP variability
was significantly greater in the "sick" group. Smart et al. [43] found
that participants who became sick exhibited distinct postural sway pat-
terns, specifically increases in magnitude and spatial complexity, but
decreases in temporal complexity, compared to those who remained
well. Building on this work, Munafo et al. [27] demonstrated that

temporal dynamics differed between symptomatic and asymptomatic
groups, but only under specific VR scenarios. Curry et al. [7] later cor-
roborated these findings, concluding that task type influences whether
temporal dynamics of body motion can identify postural instability.

Building on these non-locomotive postural assessments, our work
contributes new insights by extending pre-VR cybersickness prediction
to dynamic locomotion. While Weech et al. [53] established the pre-
dictive value of non-locomotive balance measures, to the best of our
knowledge, this is the first study to analyze baseline walking data from
participants in a natural (non-VR) environment prior to exposure to VR.
Our work would be the first to calculate the No-VR spatial and temporal
dynamics and compare them to their walking behavior within a VR
environment. This approach enables us to investigate whether individ-
uals who exhibit natural postural instability during baseline walking
are more susceptible to cybersickness when walking in VR, thereby
extending the postural instability theory from non-locomotive tasks to
locomotive environments.

2.2 Studying Cybersickness in Mobile Contexts

A 2018 review [28] noted that the area of cybersickness in VR walking
environments is underexplored. However, existing studies primarily
treat cybersickness as a secondary outcome measure rather than as the
primary focus of investigation. Studies typically use the quantification
of Cybersickness as a measure of the success or failure of their imple-
mentations [15, 24, 54], without examining the underlying mechanisms
that cause cybersickness itself.

Similarly, mobile VR experiments employ cybersickness as a bench-
mark to compare VR walking with alternative locomotion methods
[22, 25, 40, 55]. These studies repeatedly demonstrate that participants
experience minimal cybersickness during VR walking compared to
other VR navigation techniques [40, 55], reinforcing preferences for
room-scale interaction [25]. Yet despite this consistent finding that
VR walking reduces cybersickness, researchers have not examined the
underlying walking characteristics that contribute to this advantage.

There have been very few projects that have studied cybersickness as
a primary research objective in mobile VR contexts. The work by Setu
et al. [41] investigated the relationship between physiological signals,
cognitive load, and cybersickness during VR walking. This finding
corroborates earlier work [52] that demonstrated a similar relationship
between cognitive load and cybersickness using EEG measurements.
Our previous work [51, 52] measured postural stability by subtracting
baseline Center of Mass measurements from VR measurements, rep-
resenting one of the few studies recording baseline walking dataThe
present study extends this work by examining the spatial and temporal
balance dynamics within each of the baseline and VR phases indepen-
dently, rather than as difference metrics. This approach will reveal
how baseline stability relates to cybersickness and how balance pat-
terns evolve during VR exposure, providing broader insight into the
relationships between natural walking, VR walking, and cybersickness.

3 OVERVIEW

The remainder of this paper is structured to systematically build the
case for predictive cybersickness assessment in mobile VR. Section 4
details our data processing pipeline, Section 5 presents our analytical
framework, Section 6 reports our statistical findings, Section 7 describes
our machine learning model development, Section 8 explains the model
results, and Section 9 synthesizes these findings within the broader
context of Postural Instability Theory and examines implications for
mobile VR design and screening protocols.

4 DATA COLLECTION, PREPARATION AND PROCESSING

This study used motion capture data from our previous within-subjects
VR experiment on translational gain effects in locomotion and cyber-
sickness [51, 52]. The dataset comprised 3D positional coordinates of
all motion-capture markers, participant self-reported sickness ratings
(1–10 scale), and associated experimental metadata.



(a) Physical walking area. (b) Virtual walking area with gain levels.

Fig. 2: Side by side view of the physical and the virtual walking spaces.

4.1 Data Recording and Experiment Design
Experiment Structure
The study employed a progressive exposure methodology to investi-
gate VR sickness through controlled manipulation of translational gain
across six escalating levels (1×, 2×, 4×, 6×, 8×, 10×). Each participant
completed 30 trials organized into six blocks of five trials each, with
translational gain systematically intensified from natural 1:1 mapping
to 10× amplification. The experimental protocol deliberately avoided
randomization, instead using a fixed ascending sequence to prevent
carry-over effects from early exposure to high-gain levels [21].

During each trial, participants started from a virtual utility hole
marked as A in both Figures 2a and 2b. Users walked towards the
objective marked as B in both Figures 2a and 2b. Then, they turned and
walked back towards the original starting point marked as A. This pro-
cedure constituted one trial. The objective was marked by red arrows
in the virtual environment (see Figure 2b, with the virtual distance trav-
eled expanding proportionally to the gain level while physical walking
distance remained constant.

This implementation applied omnidirectional motion magnification
rather than forward-only amplification, ensuring continuous postural
instability throughout the experience. Post-experiment, participants
were categorized into two groups: those with VR sickness (VRS) and
those without VR sickness (NoVRS) based on symptom severity.

Experiment Flow
Figure 3 shows the complete experiment procedure. The session be-
gan with a pre-experiment questionnaire (PEQ) assessing participants’
familiarity with 3D and VR technologies and their self-reported suscep-
tibility to motion sickness.

After the PEQ, the researcher fitted the participant with the motion
capture suit and verified that full-body motion within the experiment
area was successfully captured and displayed. Once the motion capture
system was ready, participants performed baseline walking trials with-
out the VR headset, walking from position A to position B, and back to
position A as shown in Figure 2a.

The researcher then fitted the VR headset and adjusted the inter-
pupillary distance. The main experiment consisted of six blocks, each
with five trials, at increasing TG levels from 1x to 10x. In each trial,
participants walked toward a red arrow and back to the utility hole
(Figure 2b) in the virtual city. Upon reaching the utility hole, a vir-
tual message confirmed trial completion. It prompted participants to
respond to the researchers’ between-trial questionnaire.

Each trial lasted an average of 16 seconds, and the total experimental
time, including motion capture setup and calibration, was 25 minutes
on average.

Participant Information
The dataset contains information from 21 healthy adults (17 males, four
females). The mean age was 25.73, with a standard deviation of 3.594.

All participants had a normal or corrected-to-normal vision. Among all
participants, 13 had prior experience with three-dimensional computer
games, 9 with VR, and 15 had previously experienced motion sickness
of varying severity. The study was approved by the Human-Research
Ethics Committee of the University of Technology, Sydney. All partici-
pants provided written informed consent prior to participation.

Questionnaire Data
The dataset contains responses to two questionnaires. A Between-Trial
Questionnaire that asks participants to rate six symptoms (dizziness,
discomfort, nausea, fatigue, headache, and eyestrain) on a scale from 1
to 10 at the end of each trial. And a Post-Experiment Simulator Sickness
Questionnaire, used to categorize participants into VRS (the group
considered to have problematic levels of cybersickness) or NoVRS (the
group with little or no symptoms).
We based our division on the SSQ severity classification proposed by
Kennedy et al. [16] and applied to virtual environments by Stanney
et al. [45] which indicates that scores between 15 to 20 represent
symptoms of concern. Previous research by Arcioni et al. [1] reported
that participants who did not experience cybersickness (as determined
via a binary yes/no classification) in an HMD-based VR study had a
mean SSQ total score of M = 16.64 (SD = 12.36). Given the established
15-20 symptom concern range and Arcioni’s non-sick group averaging
16.64, we selected 18 as a conservative cutoff.

4.2 Data Processing and Cleaning
Building on this dataset, our study begins with data processing and
cleaning to derive features relevant for subsequent analysis. All our
analyses were performed in Python.

The first data processing step involved computing the CoM for each
frame. We followed the process described by Lafond et al. [19] to
compute the CoM from the marker locations. We also extracted the
head movement, represented by a marker worn on the participants’
heads.

The raw kinematic recordings contained segments unrelated to for-
ward walking (e.g., waiting, turning, answering questionnaires) and
high-frequency noise from the motion capture system. To clean the
data of noise generated at these stages, two preprocessing-aware fil-
ters were developed to detect the onset of purposeful walking, and a
robust smoother was designed to suppress measurement noise while
preserving low-frequency sway.

After all the metrics were calculated for each trial, we divided the
trials into experimental blocks. Each experimental block consisted of 5
trials, representing each level of gain in the experiment. We grouped
the data into experimental groups to observe the evolution of sickness
levels and instability metrics throughout the experiment.

Path Filtering
Because the turns during the experiment generated substantial noise in
the walking trials, we developed an algorithm that detects when the user



Fig. 3: Flow of the experiment session.

is turning and removes that data from the analysis. The filtering logic is
summarized in Table 5 in the Appendix A. This filter avoids ad-hoc time
thresholds; trials are aligned at the onset of forward motion, ensuring
subsequent kinematic measures are comparable across participants.

The result from this procedure was that each trial was divided into
halves. The first half consisted of forward walking (walking from point
A to point B). The second half involved walking back (from point B to
point A).

Path Smoothing
After the data from the turns was removed, we attenuated sensor noise
by smoothing the signal while retaining the natural sway dynamics
of the CoM and head movement. We compared existing filters such
as the 1-Euro filter [3] and FFT [9]. However, FFT introduces phase
distortion, and the 1-Euro filter may cause staircase artifacts. We
therefore designed a one-pass smoother summarised in Table 6 from
Appendix A.

The first half of the algorithm removes outliers by flagging frames
where speed exceeds threshold ks (catching sudden position jumps) and
where acceleration exceeds threshold ka (catching jittery motion), with
both thresholds set at three standard deviations. The second half applies
signal smoothing by combining median filtering (to suppress spikes)
with Savitzky–Golay filtering, which preserves features like peak height
and width while reducing noise [39] and maintaining temporal align-
ment. The resulting trajectory P̃ retains biologically meaningful sway,
which is essential for later analyses.

After this process, we removed two participants from our analysis
due to excessive noise from the motion capture.

5 ANALYSIS METHODS

After the CoM calculation and data cleaning were performed, we began
calculating various spatial and temporal metrics to use during our
analysis.

5.1 Instability Metrics
First, we calculated the multiple instability metrics used in our analy-
sis. These metrics are the Magnitude Difference, Forward Difference,
Vertical Difference, and the Lateral Difference.

Analysis began by extracting the first and last data points of each trial
as start and end positions. A straight-line trajectory was interpolated
between these points to match the temporal resolution of the original
CoM data. This reference trajectory served as a baseline for calculating
movement deviations. The same interpolation procedure was applied
to head movement data to quantify head instability during trials.

These two arrays are compared later to calculate the instability
metrics. Each value was paired with another value along what we
called the expected path line. Figure 4 shows an example of how the
3D data plots looked in relation to the expected path line.

The primary metric calculated was the magnitude difference between
corresponding 3D coordinate pairs. For each pairing of 3D points,
the magnitude of the difference vector was computed between the
biomechanical marker (CoM or head coordinate) and its corresponding
point on the expected path line.

Fig. 4: Example of expected path plot.

Calculations were performed for the forward and lateral displace-
ment components, using the x and z coordinates of the biomechanical
marker and the corresponding expected path point. Vertical displace-
ment calculations were executed by computing the difference between
the y-values of the respective coordinate pairs.

This code implements a vector decomposition that decomposes spa-
tial displacement into directional components. The first step is to
compute the displacement vector by subtracting one point from another.
This displacement vector represents the spatial deviation in 2D space.
The second operation projects this displacement vector onto a reference
direction. This projection captures how much of the total displacement
occurs along the forward or backward movement relative to an expected
path.

The final calculation determines the perpendicular component via
the cross product of the original displacement vector and its projec-
tion. This cross product yields the component of the displacement
orthogonal to the reference direction. Together, these two components,
the parallel projection and the perpendicular cross product, provide a
complete decomposition of the spatial deviation into directional compo-
nents that can be analyzed separately for forward/backward and lateral
movements.

5.2 Temporal Analysis
To calculate the temporal characteristics of the biomechanical markers,
we employed a Detrended Fluctuation Analysis (DFA) [13]. Center-of-
mass data derived from human walking exhibit high variability, which
other methods may interpret as noise. DFA overcomes this by de-
trending locally at multiple scales, isolating the genuine long-range
correlations from slow drifts or trends [5]. This method has been exten-
sively used in studies that try to understand temporal characteristics of
human biomechanics [5, 10, 14, 23, 26] and to study the relationship be-
tween temporal characteristics of human movement and their reported
levels of cybersickness [1, 18, 27, 31, 47].

The temporal structure of the data was quantified using the scaling
exponent α per axis, which reflects the predictability and persistence
of fluctuations across time scales. Specifically, α ≈ 0.5 indicates white



noise, i.e., a completely random signal [11, 33, 35]. Values between
0.5 and 1.0 suggest predictable yet flexible dynamics, where current
patterns influence future ones [8, 11, 26, 33, 35]. An α ≈ 1 has often
been associated with healthy movement [35], though others caution that
further evidence is needed before treating it as a definitive marker [11].
Values between 1 and 1.5 indicate stronger correlations and tighter
patterns [11, 35], while α ≥ 1.5 reflects excessive rigidity that may
hinder adaptive motor control during walking [35].

5.3 Statistical Analysis

The same procedure is applied to the Center of Mass and Head data
for all metrics in both the spatial and temporal analyses. The first
step consisted of evaluating data normality by generating and visu-
ally inspecting quantile-quantile (QQ) plots, in which deviations from
the diagonal reference line indicated departures from normality. All
data from the questionnaires were assumed not to follow a normal
distribution.

If the data were normally distributed, an independent-samples t-test
was conducted using the scipy Python module to compare the sick
and non-sick groups. Afterwards, effect sizes were quantified using
Cohen’s d (with Hedges’ g as a small-sample correction) along with
corresponding confidence intervals.

If the data did not follow a normal distribution, a Kruskal-Wallis
H test was conducted using the scipy Python module. Afterwards, an
epsilon squared (ε2) was reported as a measure of effect size with 95%
confidence intervals. Following Cohen [6], we interpret ε2 ≥ 0.26 as a
large effect.

6 ANALYSIS RESULT

Overall, we discarded data from 5 of 21 participants, leaving 16 for
our analysis. Four of those participants were previously reported to
have experienced a malfunction during data collection. Furthermore,
during our analysis, we removed an additional participant because
the data were incompatible with our data cleaning procedures and
consistently lost full experiment trials after processing them through
our Path Filtering and Path Smoothing.

Post-Experiment Questionnaire Results

Based on the questionnaire results, 8 participants were classified in
the VRS group, and 8 were in the NoVRS group. Each group had 2
female participants. From the VRS group, 3 participants terminated
the experiment before block 6 due to severe VR sickness symptoms at
blocks 3, 4, and 5, respectively.

The VRS group had a Total Score of µ = 39.4850,σ = 17.378,
Nausea score of µ = 47.7,σ = 19.7497, Occulomotor score of µ =
41.69,σ = 35.0886 and Disorientation score of µ = 107.88,σ =
44.488. The NoVRS group consisted of 8 participants with a TS
score of 18 or lower. The NoVRS group had Total Score of µ =
6.0225,σ = 5.3411, Nausea score of µ = 14.31,σ = 11.4025, Oc-
culomotor of µ = 9.475,σ = 13.2843 and Disorientation score of
µ = 12.18,σ = 15.6738.

Between-Trial Questionnaire Results

Most participants experienced symptoms of cybersickness during
the experiment, with all groups suffering from dizziness. Fatigue,
Headache, and Eyestrain symptoms were rarely reported by partici-
pants in both groups. These symptoms averaged below 2 out of 10
throughout the experiment for the VRS group and averaged around 1
for the NoVRS group. For that reason, those symptoms were discarded
from the analysis, and we focused on the Discomfort, Nausea, and
Dizziness scores.

Statistical analysis revealed significant differences between groups
for discomfort scores. The NoVRS group had significantly lower dis-
comfort scores than the VRS group in experimental blocks 3 and 4.
Table 1 shows a summary of this analysis. A summary of the rest of
the symptoms analyzed is available in the supplementary material.

Measure Block Statistic, p-val µ σ

Discomfort 3 H(13) = 4.93, VRS 3.77 2.14
0.026 NoVRS 1.58 0.98

Discomfort 4 H(13) = 4.67, VRS 4.40 2.70
0.031 NoVRS 1.75 1.30

Table 1: Questionnaire responses with significant differences. The third
column shows the statistic and p-value. The remaining two columns
show the mean and the standard deviation.

Block Analysis

At each experimental block, we tested for a statistical difference be-
tween the VRS and the NoVRS groups. We tested to determine which
blocks showed a statistical difference between the two groups. We
also tested which experimental blocks are different from the Baseline,
No-VR condition.

Tables 2 and 3 show results for Center of Mass and Head Move-
ment, respectively. In these tables, we have highlighted with colored
squares the experiment blocks in which we found a significant differ-
ence between the two groups, and within each group, the comparison
to baseline. Dark blue showcases blocks where a statistically signif-
icant difference was found and where a strong effect size (d ≥ 0.8
for parametric tests, ε2 ≥ 0.26 for non-parametric tests) with confi-
dence intervals excluding zero was observed. Dark yellow squares
indicate blocks where there was a statistically significant difference
(p < 0.05), but the confidence intervals crossed zero, indicating in-
sufficient evidence that the observed effect is representative of the
population. Across all comparisons in our dataset, statistically signifi-
cant results fell cleanly into these two categories, with no intermediate
cases observed where significance was accompanied by weak effect
sizes with non-zero-crossing confidence intervals.

7 PREDICTION MODEL

The observed differences in vertical movement across both spatial and
temporal metrics for center of mass and head movement motivated
the development of a classification model. This model is intended to
quantify the relative importance of vertical displacement compared to
other kinematic features in cybersickness prediction. The model in-
corporated all four kinematic directions (vertical, lateral, forward, and
magnitude) for both spatial and temporal feature types. This compre-
hensive approach allowed us to determine which movement directions
and feature types provided the strongest predictive signals. We per-
formed three different tests: combined, spatial only, and temporal only.
We conducted this test to directly compare the performance of spa-
tial versus temporal features, providing insights into whether static
movement characteristics or dynamic temporal patterns better capture
cybersickness susceptibility in mobile VR environments.

We trained a binary classifier to predict cybersickness (sick vs. non-
sick) from window-level kinematic descriptors derived from head and
CoM trajectories. Predictions were aggregated across windows, and
performance was reported at the participant level, aligning evaluation
with individual susceptibility.

Feature Engineering

For each fixed-duration window and each anatomical axis (magnitude,
lateral, vertical, forward), we extracted a diverse set of spatial descrip-
tors, including measures of central tendency (mean, median), variability
(standard deviation, interquartile range, median absolute deviation, root-
mean-square), extrema (minimum, maximum, peak-to-peak range), and
dynamic characteristics (zero-crossing rate, length-normalized peak
count). To capture temporal dynamics, we further incorporated DFA
features, using the mean α value per window. All descriptors were
aligned by (Participant, Source, Window Index) to form the design
matrix.



CoM Measurement Comparison Spatial Temporal (α)

BL 1 2 3 4 5 6 BL 1 2 3 4 5 6

Magnitude
VRS vs NoVRS
VRS vs BL
NoVRS vs BL

Lateral
VRS vs NoVRS
VRS vs BL
NoVRS vs BL

Vertical
VRS vs NoVRS
VRS vs BL
NoVRS vs BL

Forward
VRS vs NoVRS
VRS vs BL
NoVRS vs BL

Table 2: Summary of Spatial and temporal results for the Center of Mass. Blue indicates strong effects (Cohen’s d ≥ 0.8 for parametric, ε2 ≥ 0.26 for
non-parametric) with CI that do not cross 0. Orange indicates statistically significant with no effect, and gray indicates no difference. BL = Baseline
(No-VR walking).

HM Measurement Comparison Spatial Temporal (α)

BL 1 2 3 4 5 6 BL 1 2 3 4 5 6

Magnitude
VRS vs NoVRS
VRS vs BL
NoVRS vs BL

Lateral
VRS vs NoVRS
VRS vs BL
NoVRS vs BL

Vertical
VRS vs NoVRS
VRS vs BL
NoVRS vs BL

Forward
VRS vs NoVRS
VRS vs BL
NoVRS vs BL

Table 3: Summary of spatial and temporal results for the Head Movement (HM). Blue indicates strong effects (Cohen’s d ≥ 0.8 for parametric,
ε2 ≥ 0.26 for non-parametric) with CI that do not cross 0. Orange indicates statistically significant with no effect, and gray indicates no difference. BL
= Baseline (No-VR walking).

Preprocessing
Time-series gaps were handled via linear interpolation during data
cleaning (Section 4.2), with any residual missing values imputed
feature-wise using the mean. Features were standardized to zero mean
and unit variance. To reduce dimensionality, we applied univariate
feature selection (SelectKBest with ANOVA f -score), retaining at
least k ≥ 40 descriptors to preserve diversity. DFA-only models did not
require feature selection.

Classifier and Cross-Validation
We trained a ℓ2-regularized logistic regression model with class balanc-
ing to address class imbalance between sick and non-sick cases. To
implement this balancing, we applied inverse-frequency class weight-
ing within the ℓ2-regularized logistic regression model. Let N denote
the total number of samples and Nc the number of samples belonging
to class c. The weight assigned to each class was defined as

wc =
N

2Nc
,

giving the minority (VRS group) class proportionally higher influence
in the loss function. This adjustment ensures that both classes contribute
comparably during optimization and prevents the model from being

biased toward the majority class. This weighting scheme corresponds to
the standard “balanced” strategy commonly used in statistical learning
frameworks. This correction was particularly relevant for VR trial
models, where the VRS group completed fewer trials due to symptom
severity; baseline models used balanced data Logistic regression was
selected because it yields interpretable coefficients, converges reliably
with small datasets, and enables us to identify which gait features are
most strongly associated with cybersickness.

To avoid identity leakage, we employed GroupKFold cross-
validation, assigning all windows from a given participant exclusively
to either the training or test set. Depending on cohort size, we used
K = 2 or 3 folds to ensure multiple participants appeared in each test
split. Within each fold, contributions were normalized so that every
participant had equal influence, preventing bias from individuals with
more recorded windows.

This approach prioritizes interpretability and participant-level va-
lidity, allowing us to directly connect model outcomes to Postural
Instability Theory by showing how specific aspects of gait stability
predict susceptibility to cybersickness in mobile VR.



Pooling from Windows to Participants
Let p̂k,i be the predicted probability for window i of participant k and
nk the number of test windows for k. We report two pooling rules:

p̄mean
k =

1
nk

nk

∑
i=1

p̂k,i, ℓk,i = log
p̂k,i

1− p̂k,i
,

ℓ̄k =
1
τ

log
( 1

nk

nk

∑
i=1

eτℓk,i
)
, p̄LSE

k = σ(ℓ̄k),

where σ(·) is the logistic function. The LogSumExp pooling tem-
perature was fixed to τ=1.5, which emphasizes confident windows
while avoiding over-reliance on single outliers; this value was chosen
after preliminary trials indicated it provided stable performance across
participants.

Evaluation and Uncertainty Quantification
For each fold, area under the ROC curve (AUC) and accuracy (ACC;
threshold 0.5) were computed on participant-level pooled predictions;
fold means and standard deviations summarize cross-validated perfor-
mance. In addition, one out-of-fold (OOF) probability per participant
was obtained, and a 95% CI for the OOF AUC was estimated by non-
parametric bootstrap resampling over participants (B=2000), providing
a measure of robustness to sample variability.

Model Interpretation with SHAP
Post hoc explanations used a linear SHAP explainer on the preprocessed
feature space. Participant-level attributions were averaged to estimate
overall importance, and features were grouped by anatomical axis to
highlight biomechanical structure. In combined models, contributions
were also separated by family (spatial statistics vs. DFA), enabling
direct comparison of spatial and temporal predictors of cybersickness.

Analytical Conditions
Three pre-specified configurations are analyzed in parallel: (i) Spatial-
only (spatial descriptors of head/CoM), (ii) α-only (DFA exponents
per axis), and (iii) Spatial+α (concatenated features). For each con-
figuration, we trained and evaluated on (a) all sources combined, and
separately on (b) Head-only and (c) CoM-only subsets, enabling direct
comparison of predictive anatomy across sources.

8 PREDICTION MODEL RESULT

Multiple feature configurations are evaluated (spatial descriptors, tem-
poral descriptors, and combined features) derived from head motion,
center-of-mass (CoM), and their combination.

To aggregate temporal predictions, we considered two pooling strate-
gies: (i) mean pooling, which computes the arithmetic average across
frames to capture overall trends, and (ii) log-sum-exp (LSE) pooling,
which acts as a soft maximum and emphasizes short, highly discrimina-
tive segments.

Center of mass spatial features from baseline walking achieved
AUC = 0.761 (95% CI [0.476, 0.983]) using logistic regression with
participant-level cross-validation. SHAP feature importance analysis
showed vertical movement contributed 44.4% of predictive power,
lateral movement 23.0%, magnitude 22.4%, and anterior-posterior
movement 10.2%.

Temporal features alone yielded AUC = 0.561 (95% CI [0.250,
0.883]) for center of mass analysis. Head movement spatial features
achieved AUC = 0.404 (95% CI [0.102, 0.714]), while head movement
temporal features achieved AUC = 0.512 (95% CI [0.206, 0.818]).

Combined spatial and temporal features produced AUC = 0.667
(95% CI [0.365, 0.921]) for center of mass analysis and AUC = 0.686
(95% CI [0.391, 0.927]) for all features combined. Bootstrap con-
fidence intervals were computed using B=2000 resamples to assess
statistical robustness across all analyses. Cross-validation performance
showed mean AUC = 0.648 ± 0.386 (standard deviation across folds)
for center of mass spatial features, with accuracy = 0.644 ± 0.220.
In addition to accuracy and AUC, average precision (AP) and F1-
score were reported to complement threshold-independent evaluation

with class-sensitive performance measures. Across both baseline and
experimental conditions, models using spatial features or combined
spatial and temporal features generally achieved higher AP values (up
to ≈ 0.8) than temporal-feature–only models, consistent with the trends
observed for AUC. In contrast, F1-scores remained moderate (typically
≈ 0.45–0.65) and exhibited larger variability across cross-validation
folds.

For full predicted performance metrics, see Appendix C.

Feature Contributions
Axis-level SHAP analysis was conducted to quantify feature importance
across movement directions for the center of mass spatial model using
baseline walking data. The analysis computed the relative contributions
of each movement axis to the overall predictive performance.

Axis Importance

Vertical 0.444
Lateral 0.230
Magnitude 0.224
Forward 0.102

Table 4: Axis-level SHAP importances (Center of Mass spatial features,
Baseline condition)

The vertical axis contributed 44.4% of the total feature importance,
followed by lateral (23.0%), magnitude (22.4%), and forward move-
ment (10.2%). Complete SHAP importance values for all experimental
conditions and feature combinations are provided in Appendix C.

9 DISCUSSION

9.1 Before VR Exposure
Building on Postural Instability Theory (PIT), we investigated whether
naturally unstable participants would also suffer from cybersickness in
mobile VR contexts [1, 37, 49]. To this end, we analyzed both spatial
and temporal dynamics of center of mass (CoM) movement during base-
line walking, hypothesizing that pre-VR differences would distinguish
future cybersickness-susceptible individuals. We observed significant
spatial differences in CoM kinematics between groups during No-VR
walking, particularly in forward and vertical movements, where the
cybersickness-susceptible group showed greater displacement. Sur-
prisingly, we found no temporal differences in the same scenario, in
contrast to previous non-locomotive postural studies [7, 27, 47].

Machine learning analysis using SHAP (SHapley Additive exPlana-
tions) revealed that vertical movement of the center of mass was by far
the strongest predictor of cybersickness susceptibility, accounting for
44.4% of the predictive power in our logistic regression model. This
was followed by lateral movement (23.0%) and magnitude (22.4%),
while forward movement contributed only 10.2%. These findings
demonstrate that pre-VR walking assessments can effectively iden-
tify individuals susceptible to cybersickness, with vertical movement
serving as the primary feature.

The work by Arcioni et al. [1] reported similar findings to ours, with
differences in the forward movement of their participants but no differ-
ences in the lateral movement. Vertical movements of the CoM during
gait cycles reflect differences in gait strategies, with increases in vertical
movement linked to increases in walking speed [48]. The dominance of
vertical movement as a predictor (44.4% vs 10.2% for forward move-
ment) appears to suggest that mechanisms underlying cybersickness in
locomotive contexts are fundamentally different from non-locomotive
contexts, where anterior-posterior sway typically dominates.

Importantly, when comparing body segments, center of mass met-
rics outperformed head movement for prediction, with CoM vertical
movement (44.4%) substantially outperforming the best head predictor
(lateral head movement at 36.2%). This suggests that cybersickness
susceptibility reflects whole-body postural control differences rather
than head-specific sensory processing deficits. These results provide an
important constraint on sensory conflict theory (Kim et al. [17]), which



emphasizes visual-vestibular mismatches. Since vestibular organs sig-
nal head motion, a purely sensory conflict account would predict that
head movement is the stronger predictor. Our finding that CoM dis-
placement is more predictive suggests that postural instability theory
captures mechanisms beyond visual-vestibular conflict alone.

The prominence of vertical movement reflects fundamental biome-
chanics of the gait cycle, where increases in vertical displacement
typically correspond to decreases in lateral movement [29]. Previous re-
search demonstrates that increased walking speed in healthy individuals
can induce temporary postural instability, but the body’s sensorimotor
system appears to adapt and recover stability through repeated expo-
sure [38, 50]. More work is needed to determine whether this pre-VR
walking behavior is due to the participants’ natural instability or to pre-
ferred walking mechanics that influence the likelihood of cybersickness
in walking VR environments.

9.2 Influence of VR and Translational Gain
VR introduction universally modifies the walking mechanics of users
[2,12]. However, our analyses revealed that baseline spatial differences
persisted between the groups after the introduction of VR. Furthermore,
the introduction of VR generated temporal differences in vertical CoM
movement, which emerged for the first time, indicating VR’s challenge
to movement coordination.

The introduction of translational gain (Block 2) triggered divergent
adaptation strategies. Both groups exhibited stricter movement patterns
(temporal values <1.5) [35], but the cybersickness group exhibited sig-
nificantly greater rigidity. This suggests a "safety-first" strategy that
prioritizes control over flexibility, paradoxically increasing susceptibil-
ity to cybersickness, as in previous reports [52].

9.3 Symptom Manifestation
Blocks 3-4 marked the critical transition from biomechanical differ-
ences to conscious symptom recognition, as questionnaire responses
first diverged between groups at the discomfort metric. We observe sig-
nificant differences in magnitude both spatially and temporally, as well
as in vertical and lateral directions (and in the next block, in forward
movement). Spatial and temporal head-movement changes begin to
appear at this stage, especially laterally.

The consistent differences in postural instability metrics, partic-
ularly vertical movement patterns, observed before symptom mani-
festation support the core tenets of Postural Instability Theory (PIT),
which posits that instability precedes subjective cybersickness symp-
toms [36]. Similar pre-symptomatic changes have been documented
in walking environments using physiological measures [52]. These
findings demonstrate that objective biomechanical and physiological
differences between participant groups emerge before users report sub-
jective symptom changes, suggesting the potential for early detection
approaches.

Not only did we observe a significant difference between the two
groups across almost all spatial and temporal metrics, but we also
observed a general decline in vertical movement during this symp-
tomatic phase. This is consistent with previous research on walking in
VR environments, which reports that participants typically take longer
to complete trials during symptomatic phases [51, 52]. However, de-
spite an overall speed reduction, the VRS group maintained relatively
higher walking speeds than the NoVRS group, as evidenced by their
persistently greater vertical movement [48].

This pattern reinforces vertical movement as a key predictor of cy-
bersickness: even when both groups slow down in response to VR
challenges, the relative difference in vertical displacement persists, sug-
gesting that this metric captures fundamental differences in gait strategy
rather than simply speed variations. The cybersickness-susceptible
group’s inability to reduce their vertical movement to the same extent
as controls may reflect less flexible postural adaptation strategies.

9.4 Temporal Dynamics Analysis
After failing to identify any temporal differences during the NoVR
session, the main experiment session revealed temporal differences in
both groups. Throughout the experiment, the temporal dynamics of the

vertical movement of the NoVRS group showed mean DFA alpha values
between 0.9 and 1, which is considered patterned yet flexible and is
observed in healthy walking dynamics [8, 11, 26, 33, 35]. This demon-
strates self-similarity more consistent with pink-noise characteristics
(α ≈ 1.0) than with white-noise characteristics (α ≈ 0.5), indicating
structure rather than random movement patterns. These alpha values
demonstrate not only the flexibility of their walking patterns but also
their ability to maintain and manage postural challenges throughout the
VR session [34].

In contrast, the cybersickness-susceptible group consistently exhib-
ited vertical alpha values above 1.0, suggesting self-similarity more
characteristic of Brownian noise (α > 1.0). This indicates rigid, over-
constrained movement patterns. This finding aligns with previousnon-
locomotive cybersickness research that reported natural rigidity in
participants who later developed motion sickness [43, 47]. Our re-
sults demonstrate that movement rigidity in the vertical axis consis-
tently serves as a key feature of cybersickness susceptibility across this
dataset.

This temporal rigidity likely reflects increased neural control de-
mands, consistent with previous mobile VR research reporting ele-
vated cognitive load and gait adaptation in cybersickness-susceptible
participants [52]. The rigid walking patterns we observed may both
result from and contribute to this increased processing burden. Sup-
porting this interpretation, Ortega and Farley [30] demonstrated that
managing vertical movement during locomotion increases metabolic
cost, suggesting that the rigid postural control strategies adopted by
cybersickness-susceptible individuals impose additional physiological
and cognitive demands that may exacerbate their symptoms.

9.5 Spatial vs Temporal Dynamics
Spatial features demonstrated better predictive performance compared
to temporal features during VR exposure. Center of mass spatial analy-
sis achieved robust prediction (AUC = 0.761, 95% CI [0.476, 0.983]),
while temporal features yielded substantially lower performance (AUC
= 0.561). This difference indicates that spatial movement patterns carry
the primary predictive information for susceptibility to cybersickness
during virtual environment exposure.

Our analysis reveals how the temporal dynamics of VR walking fa-
cilitate an understanding of the differences in movement and adaptation
between the two groups. Spatial metrics reveal their postural control
abilities and demonstrate that they have the most predictive power for
cybersickness susceptibility.

9.6 Vertical Movement
Vertical movement emerges as the predictor that offers the greatest diag-
nostic leverage in our dataset, accounting for 44.4% of the spatial pre-
dictive importance during VR. This exceeds lateral movement (23.0%),
magnitude (22.4%), and anterior-posterior movement (10.2%) in our
experimental conditions. The difference between vertical (44.4%) and
anterior-posterior (10.2%) importance suggests that cybersickness sus-
ceptibility may involve direction-specific rather than general postural
differences, though this requires validation across different VR environ-
ments. Our findings indicate that vertical center of mass displacement
shows promise as a marker in mobile VR contexts.

The prominence of vertical movement in our mobile paradigm sug-
gests that walking-based cybersickness assessment may emphasize
different movement patterns than non-locomotive studies. This raises
the possibility that mobile cybersickness may represent a combination
of postural instability and gait control mechanisms rather than postural
instability alone.

10 FUTURE WORK

Our No-VR results show promise in identifying participants susceptible
to cybersickness in mobile environments. Future work should test
whether these findings are replicable in other types of walking virtual
environments. Future work should also develop a calibration session
for walking in VR.

The metrics used during our analysis should be validated in different
VR walking environments. Changes such as free-walking rather than



straight walking, the distance walked, and the duration walked should
be tested to determine whether these metrics differ in their ability to
measure cybersickness.

More research is needed on understanding how locomotion strategies
affect the level of cybersickness experienced. These changes can inform
our future approaches to predicting and intervening in cybersickness
across diverse environments.

Building on our kinematic findings and from Weech et al.’s [53]
demonstration that kinematics outperformed vestibular and vection
measures, future work should compare kinematic versus physiological
prediction and assess potential benefits of multimodal integration.

Previous studies have demonstrated that both physiological and
biomechanical changes precede the onset of subjective cybersickness
symptoms [41, 52]. By combining these complementary measurement
approaches with appropriate machine learning methods, it may be pos-
sible to develop predictive models that detect the onset of cybersickness
before users experience sufficient discomfort to terminate their VR
sessions. Such early-detection systems could enable proactive interven-
tions to mitigate symptoms and improve the VR user experience.

11 LIMITATIONS

One of the main limitations of this work is the sample size for the
experiments. We need a larger sample of participants to yield more
significant, more generalizable results. While we calculated the effect
size to assess the strength of our results, having more participants in
the experiment will yield stronger results.

The sample size, which yielded wide confidence intervals in our
Machine Learning Classification, also influenced our Machine Learning
analysis. The automatic feature selection, and the focus on binary
classification, should all be expanded in future studies.

Another limitation is using a single numerical cutoff to distinguish
sick from non-sick groups. Future work should complement the post-
experiment SSQ with forced-choice questions to improve participant
classification.

12 CONCLUSION

This study demonstrates that susceptibility to cybersickness can be
predicted prior to VR exposure using baseline walking assessment.
Vertical center of mass displacement emerged as the primary predictive
feature, substantially outperforming other movement directions and
establishing a foundation for proactive cybersickness screening.

Our analysis revealed a timeline of events as cybersickness develops
through different experimental stages. Spatial differences are detectable
before VR exposure, temporal changes emerge during VR introduction,
and subjective symptoms appear last through the middle of the experi-
ment. This progression suggests multiple opportunities for intervention
throughout cybersickness development.

These findings extend postural instability theory to mobile contexts,
demonstrating that cybersickness susceptibility reflects intrinsic move-
ment signatures related to gait control mechanisms rather than solely
traditional postural sway. Center of mass assessment proved supe-
rior to head movement analysis, supporting whole-body evaluation
approaches.

This research enables the development of practical screening pro-
tocols specifically for mobile VR applications, moving from reactive
symptom management to predictive risk assessment in walking-based
virtual environments. The ability to identify susceptible individuals
before mobile VR exposure supports personalized locomotion experi-
ences and could prevent negative first encounters with walking-based
virtual reality applications.
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Fig. 5: Overall Dizzy Results

A ALGORITHM APPENDIX

Table 5: Workflow of the direction-aware path filter.

Step Operation and Definitions

1 Define the task axis as v̂ = (P1 −P0)/∥P1 −P0∥, where P0 is the start
point, P1 the goal point, and v̂ the unit vector along the task axis.

2 For each displacement si = xi − xi−1 with position xi: (i) check
whether the current position is in front of the start, i.e. (xi−P0) · v̂> ε ,
(ii) check whether the step direction is within tolerance, i.e. si ·v̂

∥si∥
≥

cos(θmax), where ε is a numerical tolerance and θmax the angular
threshold.

3 Identify the first index i⋆ that satisfies both conditions.
4 Trim the trajectory to P̃ = {xi⋆ , . . . ,xN−1}, where N is the total

number of frames.

Table 6: Workflow of the robust 3-D trajectory smoother.

Step Operation and Definitions

1 Convert raw trajectory P = {x0, . . . ,xN−1} into an N ×3 matrix X,
where xi is the 3D position at frame i.

2 Compute speeds vi = ∥xi+1 −xi∥, flag frames where vi > µv + ksσv,
with µv,σv the mean and standard deviation of speeds, and ks the
threshold factor.

3 Compute accelerations ai = |vi+1 − vi|, flag frames where ai > µa +
kaσa, with µa,σa the mean and standard deviation of accelerations,
and ka the threshold factor.

4 Replace flagged frames with NaN.
5 Linearly interpolate missing values for each axis (X, Y, Z).
6 Apply per-axis median filter (window size wm).
7 Apply Savitzky–Golay filter (window wsg, polynomial order d).
8 Reconstruct smoothed trajectory P̃ , preserving original frame count.

B BOX PLOTS AND FULL STATISTICAL RESULTS

B.1 Questionnaire Results

The full results from the statistical analysis of the questionnaire are
presented in tables 7 - 9. The box plots representing these statistics can
be found in figures 5 - 7.

B.2 Center of Mass Results

The full results from the statistical analysis of the Center of Mass at a
spatial level can be found in tables 10 - 13. The box plots representing
these statistics are displayed in figures 8 - 11.

The full results from the statistical analysis of the Center of Mass
temporal dynamics can be found in tables 14 - 17. The box plots
representing these statistics are displayed in figures 12 - 15.

Fig. 6: Overall Discomfort Results

Fig. 7: Overall Nausea Results

Fig. 8: Forward Box Plots.

Fig. 9: Lateral Box Plots.



Fig. 10: Magnitude Box Plots

Fig. 11: Vertical Box Plots

Fig. 12: Forward CoM temporal box plots.

Fig. 13: Lateral CoM temporal box plots.

Discomfort
Block Statistic, p-val µ σ

1 H(14) = 0.407, VRS 2.03 1.72
0.524 NoVRS 1.18 0.25

2 H(13) = 0.683, VRS 2.63 1.27
0.409 NoVRS 2.25 1.42

3 H(13) = 4.927, VRS 3.77 2.14
0.026 NoVRS 1.58 0.98

4 H(13) = 4.673, VRS 4.40 2.70
0.031 NoVRS 1.75 1.30

5 H(11) = 1.648, VRS 3.52 2.22
0.199 NoVRS 1.90 1.29

6 H(11) = 2.166, VRS 3.76 2.08
0.141 NoVRS 2.08 1.70

Table 7: General discomfort responses across all blocks. Significant
results (p < 0.05) are highlighted in bold.

Nausea
Block Statistic, p-val µ σ

1 H(14) = 0.593, VRS 1.80 1.83
0.441 NoVRS 1.03 0.07

2 H(13) = 1.143, VRS 1.17 0.42
0.285 NoVRS 1.00 0.00

3 H(13) = 0.632, VRS 1.86 0.86
0.426 NoVRS 1.43 0.64

4 H(13) = 0.998, VRS 2.63 1.53
0.318 NoVRS 1.80 1.06

5 H(11) = 1.767, VRS 2.44 1.05
0.184 NoVRS 1.95 1.81

6 H(11) = 1.334, VRS 2.68 1.51
0.248 NoVRS 2.18 2.29

Table 8: Nausea responses across all blocks.

B.3 Head Movement Results
The full results from the statistical analysis of the head movement of
the spatial differences can be found in tables 18 - 21. The box plots
that showcase the statistics are displayed in figures 16 - 19.

The full results from the statistical analysis of the head movement
temporal dynamics can be found in tables 22 - 25. The box plots that
showcase the statistics are displayed in figures 20 - 23.

C MACHINE LEARNING RESULTS

C.1 Cross-validated Performance
The full cross-validated performance metrics for all logistic regression
models are reported in tables 26–33. These tables summarize accuracy
(ACC), average precision (AP), F1-score and area under the ROC curve
(AUC), with results presented as mean ± standard deviation across
folds.

Fig. 14: Magnitudes CoM temporal box plots



Fig. 15: Vertical CoM temporal box plots

Fig. 16: Forward Head Box Plots

Fig. 17: Lateral Head Box Plots

Fig. 18: Magnitude Head Box Plots

Fig. 19: Vertical Head Box Plots

Fig. 20: Temporal dynamics of forward head movement

Fig. 21: Temporal dynamics of lateral head movement

Fig. 22: Temporal dynamics of the magnitude difference of head move-
ment



Dizziness
Block Statistic, p-val µ σ

1 H(14) = 0.028, VRS 2.03 1.91
0.867 NoVRS 1.43 0.64

2 H(13) = 0.086, VRS 2.69 1.37
0.770 NoVRS 2.68 1.35

3 H(13) = 0.569, VRS 3.80 1.86
0.451 NoVRS 2.90 1.27

4 H(13) = 1.222, VRS 4.89 2.76
0.269 NoVRS 3.18 1.29

5 H(11) = 0.659, VRS 4.28 1.82
0.417 NoVRS 3.30 1.62

6 H(11) = 1.375, VRS 4.76 1.99
0.241 NoVRS 3.33 2.22

Table 9: Dizziness (eyes opened) responses across all blocks.

Fig. 23: Temporal dynamics of vertical head movement

Model nomenclature is as follows: logistic_b denotes baseline
(no-VR) logistic regression models, and logistic_e denotes ex-
perimental (VR) variants with augmented feature sets. The suffix
_alpha_only specifies models using only temporal DFA-based de-
scriptors, while _spatial_only restricts training to spatial postural
descriptors. Models without a suffix employ both feature families. The
“Source” column indicates whether features originate from the head,
CoM, or all available signals.

C.2 Axis-level SHAP Importances

The complete axis-level SHAP analyses are reported in tables 34–39.
These tables detail the relative contributions of kinematic directions
(Anterior–Posterior, Lateral, Vertical (Up–Down), and Magnitude) to
model predictions across head, CoM, and combined feature sources.

Table 26: Baseline (No-VR Walking) models: meanPool results for ACC
and AUC (mean ± sd).

Model Source ACC AUC

logistic_b All 0.57 ± 0.17 0.70 ± 0.23
logistic_b CoM 0.64 ± 0.22 0.65 ± 0.39
logistic_b Head 0.51 ± 0.13 0.50 ± 0.41
logistic_b_alpha_only All 0.57 ± 0.05 0.63 ± 0.29
logistic_b_alpha_only CoM 0.32 ± 0.34 0.30 ± 0.28
logistic_b_alpha_only Head 0.46 ± 0.20 0.69 ± 0.33
logistic_b_spatial_only All 0.57 ± 0.17 0.67 ± 0.27
logistic_b_spatial_only CoM 0.64 ± 0.22 0.72 ± 0.28
logistic_b_spatial_only Head 0.44 ± 0.11 0.28 ± 0.21

Table 27: Baseline (No-VR Walking) models: meanPool results for AP
and F1-score (mean ± sd).

Model Source AP F1-score

logistic_b All 0.81 ± 0.14 0.59 ± 0.16
logistic_b CoM 0.75 ± 0.25 0.53 ± 0.38
logistic_b Head 0.69 ± 0.25 0.50 ± 0.00
logistic_b_alpha_only All 0.73 ± 0.21 0.61 ± 0.08
logistic_b_alpha_only CoM 0.51 ± 0.05 0.36 ± 0.33
logistic_b_alpha_only Head 0.79 ± 0.23 0.48 ± 0.16
logistic_b_spatial_only All 0.79 ± 0.15 0.53 ± 0.19
logistic_b_spatial_only CoM 0.78 ± 0.21 0.53 ± 0.38
logistic_b_spatial_only Head 0.59 ± 0.15 0.47 ± 0.05

Table 28: Baseline (No-VR Walking) models: LSE results for ACC and
AUC (mean ± sd).

Model Source ACC AUC

logistic_b All 0.57 ± 0.17 0.67 ± 0.27
logistic_b CoM 0.64 ± 0.22 0.65 ± 0.39
logistic_b Head 0.51 ± 0.13 0.50 ± 0.41
logistic_b_alpha_only All 0.57 ± 0.05 0.67 ± 0.24
logistic_b_alpha_only CoM 0.32 ± 0.34 0.30 ± 0.28
logistic_b_alpha_only Head 0.46 ± 0.20 0.69 ± 0.33
logistic_b_spatial_only All 0.63 ± 0.26 0.74 ± 0.19
logistic_b_spatial_only CoM 0.64 ± 0.22 0.72 ± 0.28
logistic_b_spatial_only Head 0.44 ± 0.11 0.28 ± 0.21

Table 29: Baseline (No-VR Walking) models: LSE results for AP and
F1-score (mean ± sd).

Model Source AP F1-score

logistic_b All 0.79 ± 0.15 0.62 ± 0.17
logistic_b CoM 0.75 ± 0.25 0.53 ± 0.38
logistic_b Head 0.69 ± 0.25 0.50 ± 0.00
logistic_b_alpha_only All 0.75 ± 0.18 0.61 ± 0.08
logistic_b_alpha_only CoM 0.51 ± 0.05 0.36 ± 0.33
logistic_b_alpha_only Head 0.79 ± 0.23 0.48 ± 0.16
logistic_b_spatial_only All 0.82 ± 0.12 0.74 ± 0.19
logistic_b_spatial_only CoM 0.78 ± 0.21 0.53 ± 0.38
logistic_b_spatial_only Head 0.59 ± 0.15 0.47 ± 0.05

Table 30: Experimental (VR Walking) models: meanPool results for ACC
and AUC (mean ± sd).

Model Source ACC AUC

logistic_e All 0.42 ± 0.19 0.37 ± 0.32
logistic_e CoM 0.54 ± 0.26 0.33 ± 0.24
logistic_e Head 0.61 ± 0.18 0.56 ± 0.32
logistic_e_alpha_only All 0.43 ± 0.17 0.26 ± 0.19
logistic_e_alpha_only CoM 0.60 ± 0.33 0.61 ± 0.28
logistic_e_alpha_only Head 0.38 ± 0.03 0.46 ± 0.18
logistic_e_spatial_only All 0.57 ± 0.17 0.67 ± 0.27
logistic_e_spatial_only CoM 0.64 ± 0.22 0.72 ± 0.28
logistic_e_spatial_only Head 0.44 ± 0.11 0.28 ± 0.21



Spatial CoM Magnitude
Test Stats µ σ Effect Size

[Baseline] VRS H(16) = 0.008 0.14500 0.02360 ε2 = 0.0
[Baseline] NoVRS p = 0.92920 0.14264 0.04441 95% CI [0.0, 0.249]

[Block 1] VRS H(16) = 3.947 0.14619 0.04559 ε2 = 0.184
[Block 1] NoVRS p = 0.04694 0.10635 0.03887 95% CI [0.0, 0.744]

[Block 1] VRS H(15) = 0.009 0.14619 0.04559 ε2 = 0.0
[Baseline] VRS p = 0.92334 0.14500 0.02360 95% CI [0.0, 0.265]

[Block 1] NoVRS H(17) = 2.667 0.10635 0.03887 ε2 = 0.098
[Baseline] NoVRS p = 0.10247 0.14264 0.04441 95% CI [0.0, 0.545]

[Block 2] VRS H(18) = 2.766 0.09409 0.01254 ε2 = 0.098
[Block 2] NoVRS p = 0.09630 0.08215 0.01626 95% CI [0.0, 0.516]

[Block 2] VRS H(16) = 10.232 0.09409 0.01254 ε2 = 0.577
[Baseline] VRS p = 0.00138 0.14500 0.02360 95% CI [0.249, 0.742]

[Block 2] NoVRS H(18) = 9.143 0.08215 0.01626 ε2 = 0.452
[Baseline] NoVRS p = 0.00250 0.14264 0.04441 95% CI [0.100, 0.747]

[Block 3] VRS H(18) = 3.863 0.10418 0.02261 ε2 = 0.159
[Block 3] NoVRS p = 0.04937 0.08290 0.03079 95% CI [0.0, 0.650]

[Block 3] VRS H(16) = 7.587 0.10418 0.02261 ε2 = 0.412
[Baseline] VRS p = 0.00588 0.14500 0.02360 95% CI [0.066, 0.738]

[Block 3] NoVRS H(18) = 8.251 0.08290 0.03079 ε2 = 0.403
[Baseline] NoVRS p = 0.00407 0.14264 0.04441 95% CI [0.073, 0.745]

[Block 4] VRS H(18) = 7.823 0.09900 0.02707 ε2 = 0.379
[Block 4] NoVRS p = 0.00516 0.06959 0.01828 95% CI [0.048, 0.745]

[Block 4] VRS H(16) = 7.587 0.09900 0.02707 ε2 = 0.412
[Baseline] VRS p = 0.00588 0.14500 0.02360 95% CI [0.050, 0.739]

[Block 4] NoVRS H(18) = 11.571 0.06959 0.01828 ε2 = 0.575
[Baseline] NoVRS p = 0.00067 0.14264 0.04441 95% CI [0.232, 0.748]

[Block 5] VRS H(18) = 1.463 0.09460 0.02188 ε2 = 0.044
[Block 5] NoVRS p = 0.22648 0.08572 0.02443 95% CI [0.0, 0.423]

[Block 5] VRS H(16) = 8.597 0.09460 0.02188 ε2 = 0.475
[Baseline] VRS p = 0.00337 0.14500 0.02360 95% CI [0.118, 0.740]

[Block 5] NoVRS H(18) = 6.606 0.08572 0.02443 ε2 = 0.327
[Baseline] NoVRS p = 0.01017 0.14264 0.04441 95% CI [0.004, 0.739]

[Block 6] VRS H(18) = 0.143 0.09026 0.03551 ε2 = 0.0
[Block 6] NoVRS p = 0.70546 0.08704 0.03799 95% CI [0.0, 0.252]

[Block 6] VRS H(16) = 7.587 0.09026 0.03551 ε2 = 0.412
[Baseline] VRS p = 0.00588 0.14500 0.02360 95% CI [0.065, 0.738]

[Block 6] NoVRS H(18) = 6.606 0.08704 0.03799 ε2 = 0.327
[Baseline] NoVRS p = 0.01017 0.14264 0.04441 95% CI [0.005, 0.739]

Table 10: CoM Magnitude analysis results. Significant results (p < 0.05) are highlighted in bold.



Spatial CoM Lateral
Test Stats µ σ Effect Size

[Baseline] VRS H(16) = 0.789 0.00709 0.00343 ε2 = 0.019
[Baseline] NoVRS p = 0.37426 0.00935 0.00469 95% CI [0.0, 0.388]

[Block 1] VRS H(16) = 1.639 0.01218 0.00821 ε2 = 0.061
[Block 1] NoVRS p = 0.20041 0.00720 0.00556 95% CI [0.0, 0.527]

[Block 1] VRS H(15) = 1.815 0.01218 0.00821 ε2 = 0.074
[Baseline] VRS p = 0.17793 0.00709 0.00343 95% CI [0.0, 0.568]

[Block 1] NoVRS H(17) = 0.667 0.00720 0.00556 ε2 = 0.0
[Baseline] NoVRS p = 0.41422 0.00935 0.00469 95% CI [0.0, 0.376]

[Block 2] VRS H(18) = 0.966 0.00416 0.00145 ε2 = 0.020
[Block 2] NoVRS p = 0.32575 0.00352 0.00128 95% CI [0.0, 0.412]

[Block 2] VRS H(16) = 3.482 0.00416 0.00145 ε2 = 0.168
[Baseline] VRS p = 0.06206 0.00709 0.00343 95% CI [0.0, 0.649]

[Block 2] NoVRS H(18) = 5.491 0.00352 0.00128 ε2 = 0.275
[Baseline] NoVRS p = 0.01911 0.00935 0.00469 95% CI [0.0, 0.712]

[Block 3] VRS H(18) = 3.571 0.00476 0.00201 ε2 = 0.149
[Block 3] NoVRS p = 0.05878 0.00362 0.00321 95% CI [0.0, 0.625]

[Block 3] VRS H(16) = 2.282 0.00476 0.00201 ε2 = 0.102
[Baseline] VRS p = 0.13092 0.00709 0.00343 95% CI [0.0, 0.582]

[Block 3] NoVRS H(18) = 6.606 0.00362 0.00321 ε2 = 0.327
[Baseline] NoVRS p = 0.01017 0.00935 0.00469 95% CI [0.0, 0.739]

[Block 4] VRS H(18) = 4.806 0.00423 0.00218 ε2 = 0.220
[Block 4] NoVRS p = 0.02837 0.00258 0.00199 95% CI [0.0, 0.684]

[Block 4] VRS H(16) = 2.558 0.00423 0.00218 ε2 = 0.120
[Baseline] VRS p = 0.10974 0.00709 0.00343 95% CI [0.0, 0.594]

[Block 4] NoVRS H(18) = 8.691 0.00258 0.00199 ε2 = 0.428
[Baseline] NoVRS p = 0.00320 0.00935 0.00469 95% CI [0.084, 0.746]

[Block 5] VRS H(18) = 0.691 0.00367 0.00124 ε2 = 0.0
[Block 5] NoVRS p = 0.40568 0.00318 0.00153 95% CI [0.0, 0.371]

[Block 5] VRS H(16) = 4.934 0.00367 0.00124 ε2 = 0.244
[Baseline] VRS p = 0.02633 0.00709 0.00343 95% CI [0.0, 0.693]

[Block 5] NoVRS H(18) = 6.223 0.00318 0.00153 ε2 = 0.314
[Baseline] NoVRS p = 0.01261 0.00935 0.00469 95% CI [0.023, 0.735]

[Block 6] VRS H(18) = 0.091 0.00381 0.00313 ε2 = 0.0
[Block 6] NoVRS p = 0.76237 0.00366 0.00302 95% CI [0.0, 0.248]

[Block 6] VRS H(16) = 4.176 0.00381 0.00313 ε2 = 0.205
[Baseline] VRS p = 0.04099 0.00709 0.00343 95% CI [0.0, 0.671]

[Block 6] NoVRS H(18) = 6.606 0.00366 0.00302 ε2 = 0.327
[Baseline] NoVRS p = 0.01017 0.00935 0.00469 95% CI [0.005, 0.739]

Table 11: Lateral analysis results. Significant results (p < 0.05) are highlighted in bold.



Spatial CoM Vertical
Test Stats µ σ Effect Size

[Baseline] VRS H(16) = 9.126 0.01218 0.00170 ε2 = 0.502
[Baseline] NoVRS p = 0.00252 0.00876 0.00128 95% CI [0.141, 0.741]

[Block 1] VRS H(16) = 10.388 0.01088 0.00132 ε2 = 0.589
[Block 1] NoVRS p = 0.00127 0.00802 0.00102 95% CI [0.223, 0.742]

[Block 1] VRS H(15) = 1.333 0.01088 0.00132 ε2 = 0.037
[Baseline] VRS p = 0.24821 0.01218 0.00170 95% CI [0.0, 0.461]

[Block 1] NoVRS H(17) = 0.667 0.00802 0.00102 ε2 = 0.0
[Baseline] NoVRS p = 0.41422 0.00876 0.00128 95% CI [0.0, 0.376]

[Block 2] VRS H(18) = 9.606 0.00928 0.00093 ε2 = 0.482
[Block 2] NoVRS p = 0.00194 0.00718 0.00118 95% CI [0.132, 0.740]

[Block 2] VRS H(16) = 8.084 0.00928 0.00093 ε2 = 0.443
[Baseline] VRS p = 0.00447 0.01218 0.00170 95% CI [0.099, 0.740]

[Block 2] NoVRS H(18) = 5.491 0.00718 0.00118 ε2 = 0.275
[Baseline] NoVRS p = 0.01911 0.00876 0.00128 95% CI [0.009, 0.712]

[Block 3] VRS H(18) = 11.571 0.00929 0.00123 ε2 = 0.575
[Block 3] NoVRS p = 0.00067 0.00700 0.00095 95% CI [0.232, 0.748]

[Block 3] VRS H(16) = 7.587 0.00929 0.00123 ε2 = 0.412
[Baseline] VRS p = 0.00588 0.01218 0.00170 95% CI [0.065, 0.738]

[Block 3] NoVRS H(18) = 8.251 0.00700 0.00095 ε2 = 0.403
[Baseline] NoVRS p = 0.00407 0.00876 0.00128 95% CI [0.073, 0.745]

[Block 4] VRS H(18) = 7.000 0.00802 0.00059 ε2 = 0.348
[Block 4] NoVRS p = 0.00815 0.00683 0.00091 95% CI [0.024, 0.742]

[Block 4] VRS H(16) = 12.632 0.00802 0.00059 ε2 = 0.702
[Baseline] VRS p = 0.00038 0.01218 0.00170 95% CI [0.343, 0.753]

[Block 4] NoVRS H(18) = 9.606 0.00683 0.00091 ε2 = 0.482
[Baseline] NoVRS p = 0.00194 0.00876 0.00128 95% CI [0.132, 0.740]

[Block 5] VRS H(18) = 3.291 0.00755 0.00085 ε2 = 0.127
[Block 5] NoVRS p = 0.06964 0.00678 0.00097 95% CI [0.0, 0.608]

[Block 5] VRS H(16) = 12.632 0.00755 0.00085 ε2 = 0.702
[Baseline] VRS p = 0.00038 0.01218 0.00170 95% CI [0.343, 0.753]

[Block 5] NoVRS H(18) = 9.606 0.00678 0.00097 ε2 = 0.482
[Baseline] NoVRS p = 0.00194 0.00876 0.00128 95% CI [0.132, 0.740]

[Block 6] VRS H(18) = 0.463 0.00763 0.00093 ε2 = 0.0
[Block 6] NoVRS p = 0.49629 0.00736 0.00079 95% CI [0.0, 0.336]

[Block 6] VRS H(16) = 12.632 0.00763 0.00093 ε2 = 0.702
[Baseline] VRS p = 0.00038 0.01218 0.00170 95% CI [0.343, 0.753]

[Block 6] NoVRS H(18) = 5.143 0.00736 0.00079 ε2 = 0.258
[Baseline] NoVRS p = 0.02334 0.00876 0.00128 95% CI [0.0, 0.706]

Table 12: Vertical analysis results. Significant results (p < 0.05) are highlighted in bold.



Spatial CoM Forward
Test Stats µ σ Effect Size

[Baseline] VRS H(16) = 12.632 0.12764 0.01907 ε2 = 0.702
[Baseline] NoVRS p = 0.00038 0.00876 0.00128 95% CI [0.343, 0.753]

[Block 1] VRS H(16) = 3.604 0.12053 0.04567 ε2 = 0.175
[Block 1] NoVRS p = 0.05763 0.08113 0.03922 95% CI [0.0, 0.661]

[Block 1] VRS H(15) = 0.593 0.12053 0.04567 ε2 = 0.0
[Baseline] VRS p = 0.44142 0.12764 0.01907 95% CI [0.0, 0.344]

[Block 1] NoVRS H(17) = 13.500 0.08113 0.03922 ε2 = 0.740
[Baseline] NoVRS p = 0.00024 0.00876 0.00128 95% CI [0.741, 0.753]

[Block 2] VRS H(18) = 0.463 0.06716 0.01133 ε2 = 0.0
[Block 2] NoVRS p = 0.49629 0.06310 0.01569 95% CI [0.0, 0.336]

[Block 2] VRS H(16) = 12.008 0.06716 0.01133 ε2 = 0.677
[Baseline] VRS p = 0.00053 0.12764 0.01907 95% CI [0.303, 0.752]

[Block 2] NoVRS H(18) = 14.286 0.06310 0.01569 ε2 = 0.738
[Baseline] NoVRS p = 0.00016 0.00876 0.00128 95% CI [0.740, 0.753]

[Block 3] VRS H(18) = 2.520 0.08115 0.02325 ε2 = 0.084
[Block 3] NoVRS p = 0.11241 0.06619 0.02861 95% CI [0.0, 0.539]

[Block 3] VRS H(16) = 8.597 0.08115 0.02325 ε2 = 0.475
[Baseline] VRS p = 0.00337 0.12764 0.01907 95% CI [0.118, 0.740]

[Block 3] NoVRS H(18) = 14.286 0.06619 0.02861 ε2 = 0.738
[Baseline] NoVRS p = 0.00016 0.00876 0.00128 95% CI [0.741, 0.753]

[Block 4] VRS H(18) = 3.863 0.07598 0.02789 ε2 = 0.159
[Block 4] NoVRS p = 0.04937 0.05302 0.01468 95% CI [0.0, 0.620]

[Block 4] VRS H(16) = 8.597 0.07598 0.02789 ε2 = 0.475
[Baseline] VRS p = 0.00337 0.12764 0.01907 95% CI [0.118, 0.740]

[Block 4] NoVRS H(18) = 14.286 0.05302 0.01468 ε2 = 0.738
[Baseline] NoVRS p = 0.00016 0.00876 0.00128 95% CI [0.741, 0.754]

[Block 5] VRS H(18) = 0.023 0.07232 0.02520 ε2 = 0.0
[Block 5] NoVRS p = 0.87983 0.06982 0.02602 95% CI [0.0, 0.252]

[Block 5] VRS H(16) = 9.671 0.07232 0.02520 ε2 = 0.542
[Baseline] VRS p = 0.00187 0.12764 0.01907 95% CI [0.179, 0.742]

[Block 5] NoVRS H(18) = 14.286 0.06982 0.02602 ε2 = 0.738
[Baseline] NoVRS p = 0.00016 0.00876 0.00128 95% CI [0.741, 0.753]

[Block 6] VRS H(18) = 0.143 0.06854 0.03717 ε2 = 0.0
[Block 6] NoVRS p = 0.70546 0.07197 0.03926 95% CI [0.0, 0.253]

[Block 6] VRS H(16) = 8.084 0.06854 0.03717 ε2 = 0.443
[Baseline] VRS p = 0.00447 0.12764 0.01907 95% CI [0.099, 0.740]

[Block 6] NoVRS H(18) = 14.286 0.07197 0.03926 ε2 = 0.738
[Baseline] NoVRS p = 0.00016 0.00876 0.00128 95% CI [0.741, 0.753]

Table 13: Forward analysis results. Significant results (p < 0.05) are highlighted in bold.



Temporal CoM Magnitude
Test Stats µ σ Updated Effect Size

[Baseline] VRS H(16) = 0.197 1.75884 0.04909 ε2 = 0.0
[Baseline] NoVRS p = 0.65685 1.71289 0.12571 95% CI [0.0, 0.277]

[Block 1] VRS H(16) = 0.049 1.71122 0.06747 ε2 = 0.0
[Block 1] NoVRS p = 0.82528 1.70624 0.07858 95% CI [0.0, 0.265]

[Baseline] VRS H(15) = 2.083 1.75884 0.04909 ε2 = 0.075
[Block 1] VRS p = 0.14891 1.71122 0.06747 95% CI [0.0, 0.540]

[Baseline] NoVRS H(17) = 0.540 1.71289 0.12571 ε2 = 0.0
[Block 1] NoVRS p = 0.46243 1.70624 0.07858 95% CI [0.0, 0.384]

[Block 2] VRS H(18) = 2.063 1.66791 0.06216 ε2 = 0.063
[Block 2] NoVRS p = 0.15093 1.61779 0.05689 95% CI [0.0, 0.466]

[Baseline] VRS H(16) = 5.755 1.75884 0.04909 ε2 = 0.297
[Block 2] VRS p = 0.01644 1.66791 0.06216 95% CI [0.0, 0.694]

[Baseline] NoVRS H(18) = 3.291 1.71289 0.12571 ε2 = 0.131
[Block 2] NoVRS p = 0.06964 1.61779 0.05689 95% CI [0.0, 0.551]

[Block 3] VRS H(18) = 8.691 1.71509 0.06158 ε2 = 0.427
[Block 3] NoVRS p = 0.00320 1.60702 0.06018 95% CI [0.099, 0.745]

[Baseline] VRS H(16) = 2.282 1.75884 0.04909 ε2 = 0.080
[Block 3] VRS p = 0.13092 1.71509 0.06158 95% CI [0.0, 0.511]

[Baseline] NoVRS H(18) = 4.480 1.71289 0.12571 ε2 = 0.193
[Block 3] NoVRS p = 0.03429 1.60702 0.06018 95% CI [0.0, 0.621]

[Block 4] VRS H(18) = 6.223 1.69644 0.08101 ε2 = 0.290
[Block 4] NoVRS p = 0.01261 1.59691 0.04307 95% CI [0.0, 0.669]

[Baseline] VRS H(16) = 2.558 1.75884 0.04909 ε2 = 0.097
[Block 4] VRS p = 0.10974 1.69644 0.08101 95% CI [0.0, 0.536]

[Baseline] NoVRS H(18) = 4.806 1.71289 0.12571 ε2 = 0.211
[Block 4] NoVRS p = 0.02837 1.59691 0.04307 95% CI [0.0, 0.628]

[Block 5] VRS H(18) = 4.480 1.68846 0.06892 ε2 = 0.193
[Block 5] NoVRS p = 0.03429 1.62553 0.03370 95% CI [0.0, 0.613]

[Baseline] VRS H(16) = 3.482 1.75884 0.04909 ε2 = 0.155
[Block 5] VRS p = 0.06206 1.68846 0.06892 95% CI [0.0, 0.587]

[Baseline] NoVRS H(18) = 4.480 1.71289 0.12571 ε2 = 0.193
[Block 5] NoVRS p = 0.03429 1.62553 0.03370 95% CI [0.0, 0.623]

[Block 6] VRS H(18) = 0.051 1.66992 0.09396 ε2 = 0.0
[Block 6] NoVRS p = 0.82060 1.64776 0.07986 95% CI [0.0, 0.231]

[Baseline] VRS H(16) = 3.821 1.75884 0.04909 ε2 = 0.176
[Block 6] VRS p = 0.05061 1.66992 0.09396 95% CI [0.0, 0.610]

[Baseline] NoVRS H(18) = 1.651 1.71289 0.12571 ε2 = 0.036
[Block 6] NoVRS p = 0.19876 1.64776 0.07986 95% CI [0.0, 0.395]

Table 14: Magnitude analysis results. Significant results (p < 0.05) are highlighted in bold.



Temporal CoM Lateral
Test Stats µ σ Updated Effect Size

[Baseline] VRS H(16) = 0.032 1.73600 0.05689 ε2 = 0.0
[Baseline] NoVRS p = 0.85895 1.71795 0.10824 95% CI [0.0, 0.253]

[Block 1] VRS H(16) = 0.563 1.70975 0.06995 ε2 = 0.0
[Block 1] NoVRS p = 0.45291 1.68370 0.09526 95% CI [0.0, 0.380]

[Baseline] VRS H(15) = 0.454 1.73600 0.05689 ε2 = 0.0
[Block 1] VRS p = 0.50058 1.70975 0.06995 95% CI [0.0, 0.435]

[Baseline] NoVRS H(17) = 0.807 1.71795 0.10824 ε2 = 0.0
[Block 1] NoVRS p = 0.36911 1.68370 0.09526 95% CI [0.0, 0.457]

[Block 2] VRS H(18) = 4.480 1.66071 0.09948 ε2 = 0.193
[Block 2] NoVRS p = 0.03429 1.55836 0.05779 95% CI [0.0, 0.621]

[Baseline] VRS H(16) = 2.021 1.73600 0.05689 ε2 = 0.064
[Block 2] VRS p = 0.15513 1.66071 0.09948 95% CI [0.0, 0.485]

[Baseline] NoVRS H(18) = 7.823 1.71795 0.10824 ε2 = 0.379
[Block 2] NoVRS p = 0.00516 1.55836 0.05779 95% CI [0.026, 0.748]

[Block 3] VRS H(18) = 8.251 1.67141 0.06137 ε2 = 0.403
[Block 3] NoVRS p = 0.00407 1.56676 0.06059 95% CI [0.055, 0.739]

[Baseline] VRS H(16) = 3.158 1.73600 0.05689 ε2 = 0.135
[Block 3] VRS p = 0.07556 1.67141 0.06137 95% CI [0.0, 0.584]

[Baseline] NoVRS H(18) = 7.823 1.71795 0.10824 ε2 = 0.379
[Block 3] NoVRS p = 0.00516 1.56676 0.06059 95% CI [0.027, 0.730]

[Block 4] VRS H(18) = 7.823 1.63986 0.05741 ε2 = 0.379
[Block 4] NoVRS p = 0.00516 1.54773 0.06735 95% CI [0.026, 0.741]

[Baseline] VRS H(16) = 7.105 1.73600 0.05689 ε2 = 0.382
[Block 4] VRS p = 0.00769 1.63986 0.05741 95% CI [0.036, 0.735]

[Baseline] NoVRS H(18) = 7.823 1.71795 0.10824 ε2 = 0.379
[Block 4] NoVRS p = 0.00516 1.54773 0.06735 95% CI [0.023, 0.737]

[Block 5] VRS H(18) = 4.480 1.63379 0.09207 ε2 = 0.193
[Block 5] NoVRS p = 0.03429 1.54492 0.07885 95% CI [0.0, 0.613]

[Baseline] VRS H(16) = 4.934 1.73600 0.05689 ε2 = 0.246
[Block 5] VRS p = 0.02633 1.63379 0.09207 95% CI [0.0, 0.671]

[Baseline] NoVRS H(18) = 8.691 1.71795 0.10824 ε2 = 0.427
[Block 5] NoVRS p = 0.00320 1.54492 0.07885 95% CI [0.082, 0.751]

[Block 6] VRS H(18) = 0.691 1.61121 0.10487 ε2 = 0.0
[Block 6] NoVRS p = 0.40568 1.56743 0.06986 95% CI [0.0, 0.354]

[Baseline] VRS H(16) = 6.639 1.73600 0.05689 ε2 = 0.352
[Block 6] VRS p = 0.00997 1.61121 0.10487 95% CI [0.015, 0.729]

[Baseline] NoVRS H(18) = 7.823 1.71795 0.10824 ε2 = 0.379
[Block 6] NoVRS p = 0.00516 1.56743 0.06986 95% CI [0.024, 0.734]

Table 15: Lateral analysis results. Significant results (p < 0.05) are highlighted in bold.



Temporal CoM Vertical
Test Stats µ σ Updated Effect Size

[Baseline] VRS H(16) = 0.197 1.16256 0.04613 ε2 = 0.0
[Baseline] NoVRS p = 0.65685 1.12091 0.08525 95% CI [0.0, 0.285]

[Block 1] VRS H(16) = 0.439 1.00393 0.06167 ε2 = 0.0
[Block 1] NoVRS p = 0.50780 0.98489 0.06565 95% CI [0.0, 0.354]

[Baseline] VRS H(15) = 11.343 1.16256 0.04613 ε2 = 0.690
[Block 1] VRS p = 0.00076 1.00393 0.06167 95% CI [0.301, 0.880]

[Baseline] NoVRS H(17) = 7.707 1.12091 0.08525 ε2 = 0.421
[Block 1] NoVRS p = 0.00550 0.98489 0.06565 95% CI [0.065, 0.778]

[Block 2] VRS H(18) = 3.291 1.04871 0.06199 ε2 = 0.127
[Block 2] NoVRS p = 0.06964 0.98773 0.07392 95% CI [0.0, 0.551]

[Baseline] VRS H(16) = 10.808 1.16256 0.04613 ε2 = 0.654
[Block 2] VRS p = 0.00101 1.04871 0.06199 95% CI [0.283, 0.875]

[Baseline] NoVRS H(18) = 8.251 1.12091 0.08525 ε2 = 0.403
[Block 2] NoVRS p = 0.00407 0.98773 0.07392 95% CI [0.062, 0.731]

[Block 3] VRS H(18) = 9.606 1.10861 0.07395 ε2 = 0.478
[Block 3] NoVRS p = 0.00194 0.98360 0.05753 95% CI [0.128, 0.793]

[Baseline] VRS H(16) = 1.776 1.16256 0.04613 ε2 = 0.048
[Block 3] VRS p = 0.18260 1.10861 0.07395 95% CI [0.0, 0.441]

[Baseline] NoVRS H(18) = 9.143 1.12091 0.08525 ε2 = 0.452
[Block 3] NoVRS p = 0.00250 0.98360 0.05753 95% CI [0.091, 0.767]

[Block 4] VRS H(18) = 6.606 1.08859 0.05580 ε2 = 0.311
[Block 4] NoVRS p = 0.01017 1.02322 0.04197 95% CI [0.0, 0.697]

[Baseline] VRS H(16) = 5.755 1.16256 0.04613 ε2 = 0.297
[Block 4] VRS p = 0.01644 1.08859 0.05580 95% CI [0.0, 0.672]

[Baseline] NoVRS H(18) = 5.143 1.12091 0.08525 ε2 = 0.230
[Block 4] NoVRS p = 0.02334 1.02322 0.04197 95% CI [0.0, 0.635]

[Block 5] VRS H(18) = 5.143 1.05868 0.05448 ε2 = 0.230
[Block 5] NoVRS p = 0.02334 0.99106 0.06091 95% CI [0.0, 0.634]

[Baseline] VRS H(16) = 8.597 1.16256 0.04613 ε2 = 0.475
[Block 5] VRS p = 0.00337 1.05868 0.05448 95% CI [0.106, 0.796]

[Baseline] NoVRS H(18) = 8.251 1.12091 0.08525 ε2 = 0.403
[Block 5] NoVRS p = 0.00407 0.99106 0.06091 95% CI [0.059, 0.742]

[Block 6] VRS H(18) = 3.571 1.08243 0.09900 ε2 = 0.143
[Block 6] NoVRS p = 0.05878 0.98312 0.09535 95% CI [0.0, 0.551]

[Baseline] VRS H(16) = 2.850 1.16256 0.04613 ε2 = 0.116
[Block 6] VRS p = 0.09137 1.08243 0.09900 95% CI [0.0, 0.590]

[Baseline] NoVRS H(18) = 7.000 1.12091 0.08525 ε2 = 0.333
[Block 6] NoVRS p = 0.00815 0.98312 0.09535 95% CI [0.0, 0.710]

Table 16: Vertical analysis results. Significant results (p < 0.05) are highlighted in bold.



Temporal CoM Forward
Test Stats µ σ Updated Effect Size

[Baseline] VRS H(16) = 1.547 1.75159 0.05780 ε2 = 0.034
[Baseline] NoVRS p = 0.21352 1.67700 0.11857 95% CI [0.0, 0.449]

[Block 1] VRS H(16) = 0.002 1.72251 0.07962 ε2 = 0.0
[Block 1] NoVRS p = 0.96478 1.70078 0.10042 95% CI [0.0, 0.252]

[Baseline] VRS H(15) = 1.120 1.75159 0.05780 ε2 = 0.008
[Block 1] VRS p = 0.28984 1.72251 0.07962 95% CI [0.0, 0.428]

[Baseline] NoVRS H(17) = 0.060 1.67700 0.11857 ε2 = 0.0
[Block 1] NoVRS p = 0.80650 1.70078 0.10042 95% CI [0.0, 0.316]

[Block 2] VRS H(18) = 1.120 1.63943 0.06755 ε2 = 0.007
[Block 2] NoVRS p = 0.28992 1.61493 0.07971 95% CI [0.0, 0.395]

[Baseline] VRS H(16) = 9.671 1.75159 0.05780 ε2 = 0.542
[Block 2] VRS p = 0.00187 1.63943 0.06755 95% CI [0.155, 0.825]

[Baseline] NoVRS H(18) = 2.063 1.67700 0.11857 ε2 = 0.059
[Block 2] NoVRS p = 0.15093 1.61493 0.07971 95% CI [0.0, 0.457]

[Block 3] VRS t(18) = 2.068 1.71278 0.07288 ε2 = 0.192
[Block 3] NoVRS p = 0.05328 1.65420 0.04367 95% CI [0.0, 0.584]

[Baseline] VRS H(16) = 1.334 1.75159 0.05780 ε2 = 0.021
[Block 3] VRS p = 0.24806 1.71278 0.07288 95% CI [0.0, 0.419]

[Baseline] NoVRS H(18) = 1.463 1.67700 0.11857 ε2 = 0.026
[Block 3] NoVRS p = 0.22648 1.65420 0.04367 95% CI [0.0, 0.421]

[Block 4] VRS H(18) = 3.863 1.67623 0.04083 ε2 = 0.159
[Block 4] NoVRS p = 0.04937 1.61508 0.05749 95% CI [0.0, 0.569]

[Baseline] VRS H(16) = 6.189 1.75159 0.05780 ε2 = 0.324
[Block 4] VRS p = 0.01285 1.67623 0.04083 95% CI [0.0, 0.697]

[Baseline] NoVRS H(18) = 3.291 1.67700 0.11857 ε2 = 0.127
[Block 4] NoVRS p = 0.06964 1.61508 0.05749 95% CI [0.0, 0.533]

[Block 5] VRS H(18) = 1.851 1.69302 0.06817 ε2 = 0.047
[Block 5] NoVRS p = 0.17362 1.65592 0.04868 95% CI [0.0, 0.457]

[Baseline] VRS H(16) = 3.158 1.75159 0.05780 ε2 = 0.135
[Block 5] VRS p = 0.07556 1.69302 0.06817 95% CI [0.0, 0.592]

[Baseline] NoVRS H(18) = 1.120 1.67700 0.11857 ε2 = 0.007
[Block 5] NoVRS p = 0.28992 1.65592 0.04868 95% CI [0.0, 0.395]

[Block 6] VRS H(18) = 0.091 1.67248 0.09519 ε2 = 0.0
[Block 6] NoVRS p = 0.76237 1.64228 0.11199 95% CI [0.0, 0.316]

[Baseline] VRS H(16) = 2.850 1.75159 0.05780 ε2 = 0.116
[Block 6] VRS p = 0.09137 1.67248 0.09519 95% CI [0.0, 0.551]

[Baseline] NoVRS H(18) = 0.463 1.67700 0.11857 ε2 = 0.0
[Block 6] NoVRS p = 0.49629 1.64228 0.11199 95% CI [0.0, 0.334]

Table 17: Forward analysis results. Significant results (p < 0.05) are highlighted in bold.



Spatial Head Movement Magnitude
Test Stats µ σ Updated Effect Size

[Baseline] VRS H(16) = 0.008 0.15793 0.03710 ε2 = 0.0
[Baseline] NoVRS p = 0.92920 0.15799 0.05002 95% CI [0.0, 0.275]

[Block 1] VRS H(16) = 0.049 0.14845 0.03262 ε2 = 0.0
[Block 1] NoVRS p = 0.82528 0.15493 0.05885 95% CI [0.0, 0.284]

[Block 1] VRS H(15) = 0.000 0.14845 0.03262 ε2 = 0.0
[Baseline] VRS p = 1.00000 0.15793 0.03710 95% CI [0.0, 0.292]

[Block 1] NoVRS H(17) = 0.167 0.15493 0.05885 ε2 = 0.0
[Baseline] NoVRS p = 0.68309 0.15799 0.05002 95% CI [0.0, 0.297]

[Block 2] VRS H(18) = 3.291 0.12971 0.02143 ε2 = 0.127
[Block 2] NoVRS p = 0.06964 0.11140 0.01673 95% CI [0.0, 0.542]

[Block 2] VRS H(16) = 3.158 0.12971 0.02143 ε2 = 0.135
[Baseline] VRS p = 0.07556 0.15793 0.03710 95% CI [0.0, 0.586]

[Block 2] NoVRS H(18) = 4.480 0.11140 0.01673 ε2 = 0.193
[Baseline] NoVRS p = 0.03429 0.15799 0.05002 95% CI [0.0, 0.745]

[Block 3] VRS H(18) = 1.851 0.11268 0.01801 ε2 = 0.047
[Block 3] NoVRS p = 0.17362 0.09674 0.03340 95% CI [0.0, 0.510]

[Block 3] VRS H(16) = 9.126 0.11268 0.01801 ε2 = 0.508
[Baseline] VRS p = 0.00252 0.15793 0.03710 95% CI [0.179, 0.740]

[Block 3] NoVRS H(18) = 6.223 0.09674 0.03340 ε2 = 0.290
[Baseline] NoVRS p = 0.01261 0.15799 0.05002 95% CI [0.0, 0.746]

[Block 4] VRS H(18) = 2.520 0.09995 0.01941 ε2 = 0.084
[Block 4] NoVRS p = 0.11241 0.08671 0.01579 95% CI [0.0, 0.512]

[Block 4] VRS H(16) = 11.400 0.09995 0.01941 ε2 = 0.650
[Baseline] VRS p = 0.00073 0.15793 0.03710 95% CI [0.418, 0.743]

[Block 4] NoVRS H(18) = 7.406 0.08671 0.01579 ε2 = 0.356
[Baseline] NoVRS p = 0.00650 0.15799 0.05002 95% CI [0.007, 0.748]

[Block 5] VRS H(18) = 0.091 0.09678 0.02272 ε2 = 0.0
[Block 5] NoVRS p = 0.76237 0.09660 0.01727 95% CI [0.0, 0.253]

[Block 5] VRS H(16) = 10.232 0.09678 0.02272 ε2 = 0.577
[Baseline] VRS p = 0.00138 0.15793 0.03710 95% CI [0.251, 0.741]

[Block 5] NoVRS H(18) = 6.223 0.09660 0.01727 ε2 = 0.290
[Baseline] NoVRS p = 0.01261 0.15799 0.05002 95% CI [0.0, 0.748]

[Block 6] VRS H(18) = 0.823 0.08935 0.02168 ε2 = 0.0
[Block 6] NoVRS p = 0.36435 0.10129 0.02522 95% CI [0.0, 0.360]

[Block 6] VRS H(16) = 10.808 0.08935 0.02168 ε2 = 0.613
[Baseline] VRS p = 0.00101 0.15793 0.03710 95% CI [0.356, 0.742]

[Block 6] NoVRS H(18) = 5.491 0.10129 0.02522 ε2 = 0.250
[Baseline] NoVRS p = 0.01911 0.15799 0.05002 95% CI [0.0, 0.744]

Table 18: Magnitude analysis results. Significant results (p < 0.05) are highlighted in bold.



Spatial Head Movement Lateral
Test Stats µ σ Updated Effect Size

[Baseline] VRS H(16) = 1.547 0.00868 0.00339 ε2 = 0.034
[Baseline] NoVRS p = 0.21352 0.01141 0.00575 95% CI [0.0, 0.446]

[Block 1] VRS H(16) = 0.158 0.00947 0.00418 ε2 = 0.0
[Block 1] NoVRS p = 0.69110 0.01206 0.00729 95% CI [0.0, 0.315]

[Block 1] VRS H(15) = 0.148 0.00947 0.00418 ε2 = 0.0
[Baseline] VRS p = 0.70031 0.00868 0.00339 95% CI [0.0, 0.320]

[Block 1] NoVRS H(17) = 0.060 0.01206 0.00729 ε2 = 0.0
[Baseline] NoVRS p = 0.80650 0.01141 0.00575 95% CI [0.0, 0.287]

[Block 2] VRS H(18) = 1.463 0.00740 0.00302 ε2 = 0.026
[Block 2] NoVRS p = 0.22648 0.00531 0.00212 95% CI [0.0, 0.444]

[Block 2] VRS H(16) = 0.789 0.00740 0.00302 ε2 = 0.0
[Baseline] VRS p = 0.37426 0.00868 0.00339 95% CI [0.0, 0.395]

[Block 2] NoVRS H(18) = 4.806 0.00531 0.00212 ε2 = 0.211
[Baseline] NoVRS p = 0.02837 0.01141 0.00575 95% CI [0.0, 0.745]

[Block 3] VRS H(18) = 5.143 0.00541 0.00181 ε2 = 0.230
[Block 3] NoVRS p = 0.02334 0.00391 0.00301 95% CI [0.0, 0.744]

[Block 3] VRS H(16) = 5.755 0.00541 0.00181 ε2 = 0.297
[Baseline] VRS p = 0.01644 0.00868 0.00339 95% CI [0.0, 0.733]

[Block 3] NoVRS H(18) = 6.223 0.00391 0.00301 ε2 = 0.290
[Baseline] NoVRS p = 0.01261 0.01141 0.00575 95% CI [0.0, 0.748]

[Block 4] VRS H(18) = 2.766 0.00428 0.00181 ε2 = 0.098
[Block 4] NoVRS p = 0.09630 0.00304 0.00167 95% CI [0.0, 0.518]

[Block 4] VRS H(16) = 9.126 0.00428 0.00181 ε2 = 0.508
[Baseline] VRS p = 0.00252 0.00868 0.00339 95% CI [0.179, 0.741]

[Block 4] NoVRS H(18) = 7.000 0.00304 0.00167 ε2 = 0.333
[Baseline] NoVRS p = 0.00815 0.01141 0.00575 95% CI [0.0, 0.748]

[Block 5] VRS H(18) = 0.143 0.00335 0.00125 ε2 = 0.0
[Block 5] NoVRS p = 0.70546 0.00328 0.00153 95% CI [0.0, 0.283]

[Block 5] VRS H(16) = 11.400 0.00335 0.00125 ε2 = 0.650
[Baseline] VRS p = 0.00073 0.00868 0.00339 95% CI [0.418, 0.742]

[Block 5] NoVRS H(18) = 7.823 0.00328 0.00153 ε2 = 0.379
[Baseline] NoVRS p = 0.00516 0.01141 0.00575 95% CI [0.026, 0.746]

[Block 6] VRS H(18) = 0.463 0.00332 0.00185 ε2 = 0.0
[Block 6] NoVRS p = 0.49629 0.00411 0.00232 95% CI [0.0, 0.329]

[Block 6] VRS H(16) = 10.232 0.00332 0.00185 ε2 = 0.577
[Baseline] VRS p = 0.00138 0.00868 0.00339 95% CI [0.251, 0.740]

[Block 6] NoVRS H(18) = 6.223 0.00411 0.00232 ε2 = 0.290
[Baseline] NoVRS p = 0.01261 0.01141 0.00575 95% CI [0.0, 0.747]

Table 19: Lateral analysis results. Significant results (p < 0.05) are highlighted in bold.



Spatial Head Movement Vertical
Test Stats µ σ Updated Effect Size

[Baseline] VRS H(16) = 4.547 0.01313 0.00150 ε2 = 0.222
[Baseline] NoVRS p = 0.03297 0.01119 0.00197 95% CI [0.0, 0.743]

[Block 1] VRS H(16) = 7.253 0.01172 0.00101 ε2 = 0.391
[Block 1] NoVRS p = 0.00708 0.00985 0.00120 95% CI [0.046, 0.742]

[Block 1] VRS H(15) = 3.343 0.01172 0.00101 ε2 = 0.146
[Baseline] VRS p = 0.06751 0.01313 0.00150 95% CI [0.0, 0.603]

[Block 1] NoVRS H(17) = 2.160 0.00985 0.00120 ε2 = 0.068
[Baseline] NoVRS p = 0.14164 0.01119 0.00197 95% CI [0.0, 0.505]

[Block 2] VRS H(18) = 10.080 0.01054 0.00122 ε2 = 0.504
[Block 2] NoVRS p = 0.00150 0.00841 0.00094 95% CI [0.182, 0.752]

[Block 2] VRS H(16) = 8.084 0.01054 0.00122 ε2 = 0.443
[Baseline] VRS p = 0.00447 0.01313 0.00150 95% CI [0.098, 0.742]

[Block 2] NoVRS H(18) = 10.566 0.00841 0.00094 ε2 = 0.531
[Baseline] NoVRS p = 0.00115 0.01119 0.00197 95% CI [0.222, 0.746]

[Block 3] VRS H(18) = 7.406 0.00958 0.00159 ε2 = 0.356
[Block 3] NoVRS p = 0.00650 0.00790 0.00065 95% CI [0.007, 0.748]

[Block 3] VRS H(16) = 9.126 0.00958 0.00159 ε2 = 0.508
[Baseline] VRS p = 0.00252 0.01313 0.00150 95% CI [0.179, 0.741]

[Block 3] NoVRS H(18) = 12.623 0.00790 0.00065 ε2 = 0.646
[Baseline] NoVRS p = 0.00038 0.01119 0.00197 95% CI [0.413, 0.748]

[Block 4] VRS H(18) = 1.120 0.00774 0.00072 ε2 = 0.007
[Block 4] NoVRS p = 0.28992 0.00744 0.00092 95% CI [0.0, 0.435]

[Block 4] VRS H(16) = 12.632 0.00774 0.00072 ε2 = 0.727
[Baseline] VRS p = 0.00038 0.01313 0.00150 95% CI [0.518, 0.742]

[Block 4] NoVRS H(18) = 13.720 0.00744 0.00092 ε2 = 0.707
[Baseline] NoVRS p = 0.00021 0.01119 0.00197 95% CI [0.505, 0.753]

[Block 5] VRS H(18) = 0.091 0.00737 0.00069 ε2 = 0.0
[Block 5] NoVRS p = 0.76237 0.00808 0.00204 95% CI [0.0, 0.301]

[Block 5] VRS H(16) = 12.632 0.00737 0.00069 ε2 = 0.727
[Baseline] VRS p = 0.00038 0.01313 0.00150 95% CI [0.518, 0.743]

[Block 5] NoVRS H(18) = 9.606 0.00808 0.00204 ε2 = 0.478
[Baseline] NoVRS p = 0.00194 0.01119 0.00197 95% CI [0.155, 0.748]

[Block 6] VRS H(18) = 0.463 0.00779 0.00114 ε2 = 0.0
[Block 6] NoVRS p = 0.49629 0.00795 0.00071 95% CI [0.0, 0.334]

[Block 6] VRS H(16) = 12.632 0.00779 0.00114 ε2 = 0.727
[Baseline] VRS p = 0.00038 0.01313 0.00150 95% CI [0.518, 0.741]

[Block 6] NoVRS H(18) = 12.091 0.00795 0.00071 ε2 = 0.616
[Baseline] NoVRS p = 0.00051 0.01119 0.00197 95% CI [0.366, 0.753]

Table 20: Vertical analysis results. Significant results (p < 0.05) are highlighted in bold.



Spatial Head Movement Forward
Test Stats µ σ Updated Effect Size

[Baseline] VRS H(16) = 12.632 0.13691 0.04069 ε2 = 0.727
[Baseline] NoVRS p = 0.00038 0.01119 0.00197 95% CI [0.518, 0.743]

[Block 1] VRS H(16) = 0.096 0.12045 0.03174 ε2 = 0.0
[Block 1] NoVRS p = 0.75728 0.12452 0.05795 95% CI [0.0, 0.3]

[Block 1] VRS H(15) = 0.454 0.12045 0.03174 ε2 = 0.0
[Baseline] VRS p = 0.50058 0.13691 0.04069 95% CI [0.0, 0.408]

[Block 1] NoVRS H(17) = 13.500 0.12452 0.05795 ε2 = 0.750
[Baseline] NoVRS p = 0.00024 0.01119 0.00197 95% CI [0.551, 0.750]

[Block 2] VRS H(18) = 3.023 0.10171 0.02395 ε2 = 0.112
[Block 2] NoVRS p = 0.08210 0.08479 0.02053 95% CI [0.0, 0.531]

[Block 2] VRS H(16) = 3.821 0.10171 0.02395 ε2 = 0.176
[Baseline] VRS p = 0.05061 0.13691 0.04069 95% CI [0.0, 0.627]

[Block 2] NoVRS H(18) = 14.286 0.08479 0.02053 ε2 = 0.738
[Baseline] NoVRS p = 0.00016 0.01119 0.00197 95% CI [0.548, 0.755]

[Block 3] VRS H(18) = 2.063 0.08865 0.01601 ε2 = 0.059
[Block 3] NoVRS p = 0.15093 0.07383 0.03378 95% CI [0.0, 0.49]

[Block 3] VRS H(16) = 9.671 0.08865 0.01601 ε2 = 0.542
[Baseline] VRS p = 0.00187 0.13691 0.04069 95% CI [0.22, 0.741]

[Block 3] NoVRS H(18) = 14.286 0.07383 0.03378 ε2 = 0.738
[Baseline] NoVRS p = 0.00016 0.01119 0.00197 95% CI [0.548, 0.755]

[Block 4] VRS H(18) = 0.966 0.07535 0.02106 ε2 = 0.0
[Block 4] NoVRS p = 0.32575 0.06454 0.01496 95% CI [0.0, 0.41]

[Block 4] VRS H(16) = 10.808 0.07535 0.02106 ε2 = 0.613
[Baseline] VRS p = 0.00101 0.13691 0.04069 95% CI [0.356, 0.742]

[Block 4] NoVRS H(18) = 14.286 0.06454 0.01496 ε2 = 0.738
[Baseline] NoVRS p = 0.00016 0.01119 0.00197 95% CI [0.548, 0.755]

[Block 5] VRS H(18) = 0.280 0.07329 0.02509 ε2 = 0.0
[Block 5] NoVRS p = 0.59670 0.07543 0.01449 95% CI [0.0, 0.334]

[Block 5] VRS H(16) = 9.671 0.07329 0.02509 ε2 = 0.542
[Baseline] VRS p = 0.00187 0.13691 0.04069 95% CI [0.22, 0.741]

[Block 5] NoVRS H(18) = 14.286 0.07543 0.01449 ε2 = 0.738
[Baseline] NoVRS p = 0.00016 0.01119 0.00197 95% CI [0.548, 0.755]

[Block 6] VRS H(18) = 2.520 0.06343 0.02360 ε2 = 0.084
[Block 6] NoVRS p = 0.11241 0.08222 0.02443 95% CI [0.0, 0.512]

[Block 6] VRS H(16) = 11.400 0.06343 0.02360 ε2 = 0.650
[Baseline] VRS p = 0.00073 0.13691 0.04069 95% CI [0.418, 0.743]

[Block 6] NoVRS H(18) = 14.286 0.08222 0.02443 ε2 = 0.738
[Baseline] NoVRS p = 0.00016 0.01119 0.00197 95% CI [0.548, 0.755]

Table 21: Forward analysis results. Significant results (p < 0.05) are highlighted in bold.



Temporal Head Movement Magnitude
Test Stats µ σ Updated Effect Size

[Baseline] VRS H(16) = 1.547 1.72652 0.04080 ε2 = 0.034
[Baseline] NoVRS p = 0.21352 1.67493 0.11064 95% CI [0.0, 0.483]

[Block 1] VRS H(16) = 0.096 1.75014 0.11007 ε2 = 0.0
[Block 1] NoVRS p = 0.75728 1.76849 0.10866 95% CI [0.0, 0.284]

[Baseline] VRS H(15) = 1.565 1.72652 0.04080 ε2 = 0.038
[Block 1] VRS p = 0.21096 1.75014 0.11007 95% CI [0.0, 0.535]

[Baseline] NoVRS H(17) = 3.227 1.67493 0.11064 ε2 = 0.131
[Block 1] NoVRS p = 0.07245 1.76849 0.10866 95% CI [0.0, 0.606]

[Block 2] VRS H(18) = 10.080 1.75895 0.05858 ε2 = 0.504
[Block 2] NoVRS p = 0.00150 1.63889 0.04453 95% CI [0.114, 0.750]

[Baseline] VRS H(16) = 3.158 1.72652 0.04080 ε2 = 0.135
[Block 2] VRS p = 0.07556 1.75895 0.05858 95% CI [0.0, 0.620]

[Baseline] NoVRS H(18) = 2.063 1.67493 0.11064 ε2 = 0.059
[Block 2] NoVRS p = 0.15093 1.63889 0.04453 95% CI [0.0, 0.564]

[Block 3] VRS H(18) = 11.063 1.73033 0.04084 ε2 = 0.559
[Block 3] NoVRS p = 0.00088 1.61395 0.06126 95% CI [0.214, 0.750]

[Baseline] VRS H(16) = 0.008 1.72652 0.04080 ε2 = 0.0
[Block 3] VRS p = 0.92920 1.73033 0.04084 95% CI [0.0, 0.274]

[Baseline] NoVRS H(18) = 2.063 1.67493 0.11064 ε2 = 0.059
[Block 3] NoVRS p = 0.15093 1.61395 0.06126 95% CI [0.0, 0.536]

[Block 4] VRS H(18) = 8.691 1.71148 0.06049 ε2 = 0.427
[Block 4] NoVRS p = 0.00320 1.61675 0.06016 95% CI [0.086, 0.748]

[Baseline] VRS H(16) = 0.032 1.72652 0.04080 ε2 = 0.0
[Block 4] VRS p = 0.85895 1.71148 0.06049 95% CI [0.0, 0.277]

[Baseline] NoVRS H(18) = 3.291 1.67493 0.11064 ε2 = 0.127
[Block 4] NoVRS p = 0.06964 1.61675 0.06016 95% CI [0.0, 0.654]

[Block 5] VRS H(18) = 7.406 1.71361 0.03834 ε2 = 0.356
[Block 5] NoVRS p = 0.00650 1.64495 0.04735 95% CI [0.027, 0.745]

[Baseline] VRS H(16) = 0.387 1.72652 0.04080 ε2 = 0.0
[Block 5] VRS p = 0.53396 1.71361 0.03834 95% CI [0.0, 0.330]

[Baseline] NoVRS H(18) = 1.286 1.67493 0.11064 ε2 = 0.016
[Block 5] NoVRS p = 0.25684 1.64495 0.04735 95% CI [0.0, 0.481]

[Block 6] VRS H(18) = 0.091 1.68462 0.06353 ε2 = 0.0
[Block 6] NoVRS p = 0.76237 1.67629 0.08828 95% CI [0.0, 0.254]

[Baseline] VRS H(16) = 2.021 1.72652 0.04080 ε2 = 0.064
[Block 6] VRS p = 0.15513 1.68462 0.06353 95% CI [0.0, 0.547]

[Baseline] NoVRS H(18) = 0.143 1.67493 0.11064 ε2 = 0.0
[Block 6] NoVRS p = 0.70546 1.67629 0.08828 95% CI [0.0, 0.273]

Table 22: Magnitude analysis results. Significant results (p < 0.05) are highlighted in bold.



Spatial Head Movement Lateral
Test Stats µ σ Updated Effect Size

[Baseline] VRS H(16) = 0.032 1.70384 0.02815 ε2 = 0.0
[Baseline] NoVRS p = 0.85895 1.71497 0.11074 95% CI [0.0, 0.28]

[Block 1] VRS H(16) = 0.439 1.69826 0.08858 ε2 = 0.0
[Block 1] NoVRS p = 0.50780 1.72000 0.10944 95% CI [0.0, 0.354]

[Baseline] VRS H(15) = 0.037 1.70384 0.02815 ε2 = 0.0
[Block 1] VRS p = 0.84739 1.69826 0.08858 95% CI [0.0, 0.288]

[Baseline] NoVRS H(17) = 0.240 1.71497 0.11074 ε2 = 0.0
[Block 1] NoVRS p = 0.62421 1.72000 0.10944 95% CI [0.0, 0.301]

[Block 2] VRS H(18) = 5.851 1.67018 0.07111 ε2 = 0.270
[Block 2] NoVRS p = 0.01556 1.58738 0.04694 95% CI [0.0, 0.741]

[Baseline] VRS H(16) = 0.639 1.70384 0.02815 ε2 = 0.0
[Block 2] VRS p = 0.42390 1.67018 0.07111 95% CI [0.0, 0.375]

[Baseline] NoVRS H(18) = 8.251 1.71497 0.11074 ε2 = 0.403
[Block 2] NoVRS p = 0.00407 1.58738 0.04694 95% CI [0.049, 0.750]

[Block 3] VRS H(18) = 14.286 1.67075 0.04286 ε2 = 0.738
[Block 3] NoVRS p = 0.00016 1.57216 0.04557 95% CI [0.380, 0.750]

[Baseline] VRS H(16) = 3.482 1.70384 0.02815 ε2 = 0.155
[Block 3] VRS p = 0.06206 1.67075 0.04286 95% CI [0.0, 0.636]

[Baseline] NoVRS H(18) = 9.606 1.71497 0.11074 ε2 = 0.478
[Block 3] NoVRS p = 0.00194 1.57216 0.04557 95% CI [0.089, 0.750]

[Block 4] VRS H(18) = 9.606 1.65422 0.06091 ε2 = 0.478
[Block 4] NoVRS p = 0.00194 1.55941 0.04809 95% CI [0.075, 0.750]

[Baseline] VRS H(16) = 2.558 1.70384 0.02815 ε2 = 0.097
[Block 4] VRS p = 0.10974 1.65422 0.06091 95% CI [0.0, 0.589]

[Baseline] NoVRS H(18) = 9.606 1.71497 0.11074 ε2 = 0.478
[Block 4] NoVRS p = 0.00194 1.55941 0.04809 95% CI [0.083, 0.750]

[Block 5] VRS H(18) = 8.251 1.63998 0.06842 ε2 = 0.403
[Block 5] NoVRS p = 0.00407 1.53606 0.02893 95% CI [0.0, 0.743]

[Baseline] VRS H(16) = 6.189 1.70384 0.02815 ε2 = 0.324
[Block 5] VRS p = 0.01285 1.63998 0.06842 95% CI [0.0, 0.741]

[Baseline] NoVRS H(18) = 9.143 1.71497 0.11074 ε2 = 0.452
[Block 5] NoVRS p = 0.00250 1.53606 0.02893 95% CI [0.093, 0.749]

[Block 6] VRS H(18) = 2.063 1.64032 0.05811 ε2 = 0.059
[Block 6] NoVRS p = 0.15093 1.59697 0.08101 95% CI [0.0, 0.547]

[Baseline] VRS H(16) = 6.189 1.70384 0.02815 ε2 = 0.324
[Block 6] VRS p = 0.01285 1.64032 0.05811 95% CI [0.0, 0.738]

[Baseline] NoVRS H(18) = 5.851 1.71497 0.11074 ε2 = 0.270
[Block 6] NoVRS p = 0.01556 1.59697 0.08101 95% CI [0.0, 0.741]

Table 23: Lateral analysis results. Significant results (p < 0.05) are highlighted in bold.



Spatial Head Movement Vertical
Test Stats µ σ Updated Effect Size

[Baseline] VRS H(16) = 0.032 1.14651 0.06124 ε2 = 0.0
[Baseline] NoVRS p = 0.85895 1.12610 0.14354 95% CI [0.0, 0.28]

[Block 1] VRS H(16) = 0.002 1.03052 0.07373 ε2 = 0.0
[Block 1] NoVRS p = 0.96478 1.03973 0.04880 95% CI [0.0, 0.231]

[Baseline] VRS H(15) = 7.259 1.14651 0.06124 ε2 = 0.417
[Block 1] VRS p = 0.00705 1.03052 0.07373 95% CI [0.0, 0.741]

[Baseline] NoVRS H(17) = 2.160 1.12610 0.14354 ε2 = 0.073
[Block 1] NoVRS p = 0.14164 1.03973 0.04880 95% CI [0.0, 0.518]

[Block 2] VRS H(18) = 3.863 1.10482 0.07789 ε2 = 0.159
[Block 2] NoVRS p = 0.04937 1.03047 0.06358 95% CI [0.0, 0.702]

[Baseline] VRS H(16) = 1.334 1.14651 0.06124 ε2 = 0.021
[Block 2] VRS p = 0.24806 1.10482 0.07789 95% CI [0.0, 0.443]

[Baseline] NoVRS H(18) = 2.766 1.12610 0.14354 ε2 = 0.098
[Block 2] NoVRS p = 0.09630 1.03047 0.06358 95% CI [0.0, 0.569]

[Block 3] VRS H(18) = 6.606 1.14433 0.06897 ε2 = 0.311
[Block 3] NoVRS p = 0.01017 1.03664 0.06223 95% CI [0.0, 0.744]

[Baseline] VRS H(16) = 0.000 1.14651 0.06124 ε2 = 0.0
[Block 3] VRS p = 1.00000 1.14433 0.06897 95% CI [0.0, 0.134]

[Baseline] NoVRS H(18) = 3.291 1.12610 0.14354 ε2 = 0.127
[Block 3] NoVRS p = 0.06964 1.03664 0.06223 95% CI [0.0, 0.612]

[Block 4] VRS H(18) = 1.651 1.08900 0.04719 ε2 = 0.036
[Block 4] NoVRS p = 0.19876 1.05706 0.05481 95% CI [0.0, 0.491]

[Baseline] VRS H(16) = 3.821 1.14651 0.06124 ε2 = 0.176
[Block 4] VRS p = 0.05061 1.08900 0.04719 95% CI [0.0, 0.655]

[Baseline] NoVRS H(18) = 2.063 1.12610 0.14354 ε2 = 0.059
[Block 4] NoVRS p = 0.15093 1.05706 0.05481 95% CI [0.0, 0.548]

[Block 5] VRS H(18) = 4.480 1.11153 0.08296 ε2 = 0.193
[Block 5] NoVRS p = 0.03429 1.02672 0.05873 95% CI [0.0, 0.713]

[Baseline] VRS H(16) = 1.137 1.14651 0.06124 ε2 = 0.009
[Block 5] VRS p = 0.28632 1.11153 0.08296 95% CI [0.0, 0.413]

[Baseline] NoVRS H(18) = 3.291 1.12610 0.14354 ε2 = 0.127
[Block 5] NoVRS p = 0.06964 1.02672 0.05873 95% CI [0.0, 0.643]

[Block 6] VRS H(18) = 0.571 1.10124 0.04882 ε2 = 0.0
[Block 6] NoVRS p = 0.44969 1.10450 0.06104 95% CI [0.0, 0.354]

[Baseline] VRS H(16) = 1.776 1.14651 0.06124 ε2 = 0.049
[Block 6] VRS p = 0.18260 1.10124 0.04882 95% CI [0.0, 0.518]

[Baseline] NoVRS H(18) = 1.286 1.12610 0.14354 ε2 = 0.016
[Block 6] NoVRS p = 0.25684 1.10450 0.06104 95% CI [0.0, 0.468]

Table 24: Vertical analysis results. Significant results (p < 0.05) are highlighted in bold.



Spatial Head Movement Forward
Test Stats µ σ Updated Effect Size

[Baseline] VRS H(16) = 0.126 1.76631 0.05244 ε2 = 0.0
[Baseline] NoVRS p = 0.72228 1.74658 0.10594 95% CI [0.0, 0.306]

[Block 1] VRS H(16) = 0.018 1.79466 0.08089 ε2 = 0.0
[Block 1] NoVRS p = 0.89463 1.79768 0.08036 95% CI [0.0, 0.231]

[Baseline] VRS H(15) = 1.815 1.76631 0.05244 ε2 = 0.054
[Block 1] VRS p = 0.17793 1.79466 0.08089 95% CI [0.0, 0.556]

[Baseline] NoVRS H(17) = 1.127 1.74658 0.10594 ε2 = 0.007
[Block 1] NoVRS p = 0.28849 1.79768 0.08036 95% CI [0.0, 0.446]

[Block 2] VRS H(18) = 6.606 1.78589 0.05677 ε2 = 0.311
[Block 2] NoVRS p = 0.01017 1.70633 0.05521 95% CI [0.0, 0.744]

[Baseline] VRS H(16) = 0.505 1.76631 0.05244 ε2 = 0.0
[Block 2] VRS p = 0.47720 1.78589 0.05677 95% CI [0.0, 0.364]

[Baseline] NoVRS H(18) = 2.766 1.74658 0.10594 ε2 = 0.098
[Block 2] NoVRS p = 0.09630 1.70633 0.05521 95% CI [0.0, 0.584]

[Block 3] VRS t(18) = 2.543 1.77755 0.04105 ε2 = 0.311
[Block 3] NoVRS p = 0.02041 1.70574 0.07411 95% CI [0.0, 0.743]

[Baseline] VRS H(16) = 0.197 1.76631 0.05244 ε2 = 0.0
[Block 3] VRS p = 0.65685 1.77755 0.04105 95% CI [0.0, 0.311]

[Baseline] NoVRS H(18) = 2.766 1.74658 0.10594 ε2 = 0.098
[Block 3] NoVRS p = 0.09630 1.70574 0.07411 95% CI [0.0, 0.569]

[Block 4] VRS H(18) = 2.063 1.75105 0.05368 ε2 = 0.059
[Block 4] NoVRS p = 0.15093 1.70827 0.05396 95% CI [0.0, 0.536]

[Baseline] VRS H(16) = 0.387 1.76631 0.05244 ε2 = 0.0
[Block 4] VRS p = 0.53396 1.75105 0.05368 95% CI [0.0, 0.344]

[Baseline] NoVRS H(18) = 3.023 1.74658 0.10594 ε2 = 0.112
[Block 4] NoVRS p = 0.08210 1.70827 0.05396 95% CI [0.0, 0.602]

[Block 5] VRS H(18) = 8.251 1.74338 0.05419 ε2 = 0.403
[Block 5] NoVRS p = 0.00407 1.66282 0.04156 95% CI [0.038, 0.750]

[Baseline] VRS H(16) = 1.547 1.76631 0.05244 ε2 = 0.034
[Block 5] VRS p = 0.21352 1.74338 0.05419 95% CI [0.0, 0.499]

[Baseline] NoVRS H(18) = 7.823 1.74658 0.10594 ε2 = 0.379
[Block 5] NoVRS p = 0.00516 1.66282 0.04156 95% CI [0.021, 0.748]

[Block 6] VRS H(18) = 0.280 1.71008 0.04440 ε2 = 0.0
[Block 6] NoVRS p = 0.59670 1.70484 0.08245 95% CI [0.0, 0.301]

[Baseline] VRS H(16) = 4.934 1.76631 0.05244 ε2 = 0.246
[Block 6] VRS p = 0.02633 1.71008 0.04440 95% CI [0.0, 0.735]

[Baseline] NoVRS H(18) = 1.851 1.74658 0.10594 ε2 = 0.047
[Block 6] NoVRS p = 0.17362 1.70484 0.08245 95% CI [0.0, 0.531]

Table 25: Forward analysis results. Significant results (p < 0.05) are highlighted in bold.



Table 31: Experimental (VR Walking) models: meanPool results for AP
and F1-score (mean ± sd).

Model Source AP F1-score

logistic_e All 0.57 ± 0.20 0.44 ± 0.32
logistic_e CoM 0.51 ± 0.11 0.54 ± 0.38
logistic_e Head 0.71 ± 0.24 0.48 ± 0.36
logistic_e_alpha_only All 0.46 ± 0.11 0.44 ± 0.31
logistic_e_alpha_only CoM 0.69 ± 0.24 0.56 ± 0.42
logistic_e_alpha_only Head 0.56 ± 0.07 0.49 ± 0.07
logistic_e_spatial_only All 0.79 ± 0.15 0.53 ± 0.19
logistic_e_spatial_only CoM 0.78 ± 0.21 0.53 ± 0.38
logistic_e_spatial_only Head 0.59 ± 0.15 0.47 ± 0.05

Table 32: Experimental (VR Walking) models: LSE results for ACC and
AUC (mean ± sd).

Model Source ACC AUC

logistic_e All 0.42 ± 0.19 0.28 ± 0.28
logistic_e CoM 0.54 ± 0.26 0.33 ± 0.24
logistic_e Head 0.61 ± 0.18 0.56 ± 0.32
logistic_e_alpha_only All 0.50 ± 0.09 0.43 ± 0.00
logistic_e_alpha_only CoM 0.60 ± 0.33 0.61 ± 0.28
logistic_e_alpha_only Head 0.38 ± 0.03 0.46 ± 0.18
logistic_e_spatial_only All 0.63 ± 0.26 0.74 ± 0.19
logistic_e_spatial_only CoM 0.64 ± 0.22 0.72 ± 0.28
logistic_e_spatial_only Head 0.44 ± 0.11 0.28 ± 0.21

Table 33: Experimental (VR Walking) models: LSE results for AP and
F1-score (mean ± sd).

Model Source AP F1-score

logistic_e All 0.54 ± 0.18 0.44 ± 0.32
logistic_e CoM 0.51 ± 0.11 0.54 ± 0.38
logistic_e Head 0.71 ± 0.24 0.48 ± 0.36
logistic_e_alpha_only All 0.51 ± 0.06 0.58 ± 0.13
logistic_e_alpha_only CoM 0.69 ± 0.24 0.56 ± 0.42
logistic_e_alpha_only Head 0.56 ± 0.07 0.49 ± 0.07
logistic_e_spatial_only All 0.82 ± 0.12 0.66 ± 0.25
logistic_e_spatial_only CoM 0.78 ± 0.21 0.53 ± 0.38
logistic_e_spatial_only Head 0.59 ± 0.15 0.47 ± 0.05

Table 34: Axis-level SHAP importances (mean absolute contributions)
for logistic_b.

Source AnteriorPosterior Lateral Magnitude UPDown

All 0.138 0.284 0.247 0.331
CoM 0.113 0.261 0.196 0.430
Head 0.394 0.286 0.085 0.235

Table 35: Axis-level SHAP importances (mean absolute contributions)
for logistic_b_alpha_only.

Source AnteriorPosterior Lateral Magnitude UPDown

All 0.359 0.224 0.373 0.044
CoM 0.079 0.390 0.275 0.257
Head 0.524 0.137 0.292 0.047

Table 36: Axis-level SHAP importances (mean absolute contributions)
for logistic_b_spatial_only.

Source AnteriorPosterior Lateral Magnitude UPDown

All 0.177 0.250 0.237 0.337
CoM 0.102 0.230 0.224 0.444
Head 0.300 0.362 0.134 0.205

Table 37: Axis-level SHAP importances (mean absolute contributions)
for logistic_e.

Source AnteriorPosterior Lateral Magnitude UPDown

All 0.152 0.302 0.267 0.279
CoM 0.191 0.330 0.208 0.271
Head 0.246 0.289 0.255 0.210

Table 38: Axis-level SHAP importances (mean absolute contributions)
for logistic_e_alpha_only.

Source AnteriorPosterior Lateral Magnitude UPDown

All 0.076 0.525 0.117 0.282
CoM 0.049 0.766 0.112 0.072
Head 0.168 0.098 0.176 0.559

Table 39: Axis-level SHAP importances (mean absolute contributions)
for logistic_e_spatial_only.

Source AnteriorPosterior Lateral Magnitude UPDown

All 0.177 0.250 0.237 0.337
CoM 0.102 0.230 0.224 0.444
Head 0.300 0.362 0.134 0.205
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